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A B S T R A C T   

The parallel developments of genetically-encoded calcium indicators and fast fluorescence imaging techniques allows one to simultaneously record neural activity of 
extended neuronal populations in vivo. To fully harness the potential of functional imaging, one needs to infer the sequence of action potentials from fluorescence 
traces. Here we build on recently proposed computational approaches to develop a blind sparse deconvolution (BSD) algorithm based on a generative model for 
inferring spike trains from fluorescence traces. BSD features, (1) automatic (fully unsupervised) estimation of the hyperparameters, such as spike amplitude, noise 
level and rise and decay time constants, (2) a novel analytical estimate of the sparsity prior, which yields enhanced robustness and computational speed with respect 
to existing methods, (3) automatic thresholding for binarizing spikes that maximizes the precision-recall performance, (4) super-resolution capabilities increasing the 
temporal resolution beyond the fluorescence signal acquisition rate. BSD also uniquely provides theoretically-grounded estimates of the expected performance of the 
spike reconstruction in terms of precision-recall and temporal accuracy for each recording. The performance of the algorithm is established using synthetic data and 
through the SpikeFinder challenge, a community-based initiative for spike-rate inference benchmarking based on a collection of joint electrophysiological and 
fluorescence recordings. Our method outperforms classical sparse deconvolution algorithms in terms of robustness, speed and/or accuracy and performs competi-
tively in the SpikeFinder challenge. This algorithm is modular, easy-to-use and made freely available. Its novel features can thus be incorporated in a straightforward 
way into existing calcium imaging packages.  

1. Introduction 

In the last two decades, functional calcium imaging has emerged as 
a popular method for recording brain activity in vivo. This technique 
relies on calcium sensors, either synthetic or genetically expressed, that 
are designed to optically report the transient rise in intra-cellular cal-
cium concentration that accompany spiking events. Compared to 
standard electrophysiology methods, calcium imaging is non-invasive, 
allows monitoring extended neuronal networks (up to a few tens of 
thousands of units) and can be combined with genetic methods in order 
to target specific neuronal populations. However, calcium imaging only 
provides a proxy measure of the neuronal activity. The kinetics of the 
calcium/reporter complexation being relatively slow, a spike-evoked 
fluorescence transient lasts much longer (0.1-1 s) than the action po-
tential itself (< 5 ms). As the fluorescence signal is generally noisy and/ 
or weakly sampled, its interpretation heavily relies on deconvolution 
methods to infer approximated spike trains. With the rapid increase in 
data-throughput offered by current fast imaging techniques (Holekamp 
et al., 2008; Panier et al., 2013; Ahrens et al., 2013; Wolf et al., 2015), 
these methods need to be fast and unsupervised, as any manual check of 
the produced inference signals would be prohibitively tedious. Due to 
the high noise level, simple inference methods such as naive linear 

deconvolution and Wiener filtering prove inadequate. In the last 
decade, numerous alternative deconvolution algorithms have thus been 
proposed (Yaksi and Friedrich, 2006; Holekamp et al., 2008; Sasaki 
et al., 2008; Vogelstein et al., 2009, 2010; Grewe et al., 2010; 
Mishchencko et al., 2011; Pnevmatikakis et al., 2013, 2016; Lütcke 
et al., 2013; Deneux et al., 2016; Theis et al., 2016; Picardo et al., 2016; 
Friedrich et al., 2017, 2016); among them, a powerful family of algo-
rithms is based on non-negative sparse deconvolution (Vogelstein et al., 
2010; Pnevmatikakis et al., 2016; Friedrich et al., 2017). In short, it 
consists in solving the inverse problem using the a priori knowledge that 
the spikes are sparse and non-negative. This framework, introduced by  
Vogelstein et al. (2010), was shown to efficiently recover spike trains 
from fluorescence signals. However, its performance is strongly de-
pendent on the algorithm's hyperparameters, namely the sparsity prior 
that controls the mean spike rate and the time constants characterizing 
the calcium reporter dynamics. 

Despite extensive efforts for automatically adjusting these para-
meters (Pnevmatikakis et al., 2016; Friedrich et al., 2017), progress are 
still needed to achieve the adequate robustness of the inference 
(Kazemipour et al., 2016). Another drawback of current algorithms is 
that the interpretation of the output can be challenging due to a paucity 
of theoretical understanding of their performance. No information is 
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provided regarding the expected error rate of the inference or the time- 
precision of the output signal, i.e. the probability that a given spike be 
inferred in advance or delayed with respect to the true spike. Such 
information would be highly valuable, not only for downstream ana-
lysis but also for prior experimental design. In functional imaging, a 
trade-off has to be made between the sampling frequency, the signal-to- 
noise ratio and the imaged volume (that in turn sets the number of 
recorded neurons). Such choice of experimental parameters could be 
rationalized if one could forsee the achievable performance in terms of 
spike detection and timing precision for any given configuration. To 
address these various requirements, the inference algorithm should thus 
be accurate enough to make the most of the data, while being simple 
enough to be interpretable. It should provide a robust and unbiased 
extraction of the experimental parameters, such as signal-to-noise ratio 
or kernel shape, from the raw fluorescence datasets. It should finally 
offer a theoretically-grounded estimate of the inference performance for 
any given value of these parameters. 

In the present study, we build on a recently proposed non-negative 
sparse inference method to develop the so-called blind sparse deconvo-
lution (BSD) algorithm. This novel implementation features automatic 
estimation of the hyperparameters, enhanced speed, similar-to-better 
reconstruction performances and super-resolution capabilities. We ad-
ditionally provide thresholding guidelines and theoretical bounds on its 
performance, in terms of inference efficiency and temporal accuracy as 
a function of the experimental parameters. These various features are 
benchmarked on both synthetic and real data, covering a large spec-
trum of experimental contexts. 

2. Materials and methods 

2.1. Generative model 

Standard inference methods are based on a generative model, which 
describes the relationship between a spike train and the resulting 
fluorescence time trace. It reads: 

= + +F F t a K N t d b( ) ( ) ( )i i i i (1) 

where ti = iΔt is the time of measurement, =N t( ) j t t, j denotes the 
spike train, b is the baseline fluorescence (spikeless signal), and  εi is a 
discrete gaussian white noise: 〈  εi〉=0, 〈  εi  εj〉 = σ2δi,j. The convolu-
tion kernel K(t), which reflects the complexation kinetics, is of the form: 

K t e e( ) ( )
t t

t 0d r (2) 

where the rise and decay time constants τr, τd – typically in the range of 
10-100ms and 50-1000ms, respectively – mostly depend on the calcium 
indicator but can also vary with the targeted neuron. In the following, 
we normalize K such that maxt K(t) = 1, hence each spike produces a 
transient of maximum height a. The signal-to-noise ratio (SNR) is thus 
defined as =SNR a . The noise stems from fluctuations of intra-cellular 
chemical concentration, light source and detector noise, incorrect 
baseline estimation, and other modeling errors. Typical SNR values 
range from below 1 to 10. 

This description corresponds to configuration in which reporter 
sensitivity and acquisition rates allow the detection of individual spikes. 
In many real situations, this is not the case and one can only detect 
bursts of spikes over timescales shorter than the sampling window. In 
this case, the signal N to be inferred is not binary anymore but remains 
sparse, and it reflects the instantaneous spike rate. The amplitude a is a 
characteristic scale of the (non-zero) signal, e.g. such that = aN

N
Var( ) . 

2.2. Non-negative sparse deconvolution 

We recall first the non-negative sparse deconvolution approach for 
inferring N(t). We rewrite Eq. (1) as: 

= + +

= + + +

= + +
=

F a K t t b

F a K t i j N b

aF N b

( )

[ ( 1)]

i
l

i l i

i
j

T

j i
1

(3) 

where i ∈ [1, T] is the time frame index, t f
1 is the sampling interval, 

is the convolution matrix = +K t i j[ ( 1)]ij and 
= =N N t( )j t j t

j t
( 1) is the number of spikes in the time interval 

[(j − 1)Δt, jΔt] 1 . Note that the first and second lines are not equiva-
lent. The second expression implicitly assumes that:  

2 The boundary condition N(t) = 0, ∀ t  <  0 holds, which is generally 
true in recordings that start during inactive periods. This simplifi-
cation can be easily relaxed for inference.2  

3 One can approximate K(ti − tl) = K(iΔt − tl) as K i t j t[ ( 1) ]l
where =j 1l

t
t
l . This discretization error is negligible when Δt is 

small,3 yet it ensures that the matrix is translation invariant, i.e. 
= K i j( )ij . 

From Eq. (3), a naive estimate for N can be written as: 

=

=
=

ˆ
ˆ

a

F a N b

N F b

N

1 ( )

argmin 1
2

[ ( ) ]
N i

T

i i

1

1

2

(4)  

In practice however, this approach fails to recover any spike at ty-
pical noise level SNR = 2.5 as shown in Section 3.1 and illustrated in  
Fig. 1. To understand this failure, one may reason in the continuous 
framework for which Eq. (4) reads N̂ t K F t b d( ) ( )[ ( ) ]1 . 
Here, the inverse convolution kernel K−1 is proportional to 

+ +t t t( ) ( ) ( )1 1 1
r d r d

thus the naive deconvolution reads: 

+ + +N̂ F t F t F t( ) 1 1 ( ) 1 ( )t
r d

t
r d

2

(5)  

A naive estimator of the signal thus involves computing the deri-
vatives of the original signal, and is therefore extremely sensitive to 
high frequency noise. An intuitive solution to mitigate this issue con-
sists in filtering out the high frequency component before carrying out 
the deconvolution, as is the basis of the Wiener deconvolution method. 
Vogelstein et al. showed that it also performs poorly because such fil-
tering smoothes out the fast rise of the spike-evoked fluorescence 
transients. In contrast, non-negative sparse deconvolution estimators 
achieve both filtering of the noise while preserving the high-frequency 
signal. They are given by the outcome of the following optimization 
problem: 

= +
=

F a N b NN̂ argmin 1
2

[ ( ) ]
N i

T

i i i
0 1

2

(6) 

or equivalently: 

= +
=a

F N b NN̂ 1 argmin 1
2

( ( ) )
N i

T

i i i
0 1

2

(7) 

where =, a are L1 penalty coefficients that control the sparsity of 

1 The choice of the convention = +K t i j[ ( 1)]ij instead of 
= K t i j[ ( )]ij ensures that > = <j i j i0 , 0ij ij . Thus, Ni is the 

count of spikes occurring after measurement Fi−1 and before measurement Fi 
2 Indeed, > = + +>t K t t K t t e e, , 0, ( ) ( )tl l tl l

t
r

t
d0 . We 

assume here that α = β = 0 but we could treat them as unknown variables to be 
inferred. 

3 We go beyond this approximation in Section 2.6, when discussing super- 
resolution. 
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the optimum (the higher λ, the sparser the optimum). When λ = 0 and 
the N ≥ 0 constraint is relaxed, the optimal value ̂N is exactly given by 
Eq. (4). As shown in the next section, the choice of λ is crucial for 
efficient denoising and proper spike inference. Notice that the optimi-
zation problem is convex and can be solved efficiently in T( ) for 
double-exponential kernels using the interior-point method, see  
Vogelstein et al. (2010). This unusual linear scaling for a matrix in-
version-like operation owes to the fact that 1 is tridiagonal for 
double-exponential kernels: ++ +i j i jij

1
ij 1 , 1 2 , 2, with 

= + ( )( )exp expt t
1 r d

, = ( )exp t t
2 r d

. In Friedrich et al. 
(2017), the authors apply the Pool-Adjacent Violator Algorithm ori-
ginally developed for isotonic regression problems to solve this opti-
mization in an even faster but approximate way. 

2.3. Determination of the sparsity prior λ and signal threshold value 

The choice of the regularization parameter λ is crucial. If it is too 
large, the inferred spike train is =N̂ 0 and all spikes are missed, 
whereas if it is too small, noise-induced transients are interpreted as 
spikes yielding large false positive rates. Intuitively, we expect the 
optimal choice to depend on the parameters of the generative model 
(noise level, spike amplitude, etc.) Here we review the expressions of λ 
previously used and we then introduce our method. We adopt the 
convention from Eq. (7) and drop the primes. We assume for now that 
all generative model parameters are known. 

2.3.1. Existing methods: fast-oopsi and constrained-oopsi 
In Vogelstein et al. (2010), the authors derive the non-negative 

sparse deconvolution from an approximate Maximum A Posteriori 
principle. They assume that the spike count Ni at time step i follows a 
Poisson distribution of mean νΔt, where ν is the firing rate. After ap-
proximating the Poisson prior with an exponential distribution, they 
compute the negative log-likelihood − logP(F, N), which they find to be 
proportional to (7) with a sparsity prior λ given by: 

=
a toopsi

2

(8)  

This approach thus provides an analytical expression for λ. 
However, using an exponential approximation instead of Poisson can 
largely overestimate the threshold required (it is illustrated for a simple 
example in Appendix I), and result in improper behavior in several 
realistic experimental conditions as shown in Section 3.1 and illustrated 
in Fig. 1. To address this issue, a non-analytical method called con-
strained-oopsi (referred to as con-oopsi in the following) was recently 
introduced in Pnevmatikakis et al. (2016). The authors propose the 
following constrained deconvolution: 

=N̂ N

F N T

argmin

subject to [ ( ) ]

N i
i

i
i i

0

2 2

(9) 

where T is the number of observations. The problem can be rewritten 
using the Karush-Kuhn Tucker conditions by introducing the La-
grangian = +N F N[ ( ) ]i i i i i

2 where ρ is the Lagrange mul-
tiplier associated with the constraint. There exists ρ such that the cri-
tical point N★ of is the solution of the constrained optimization 
problem. Clearly, N★ satisfies the constraint only if ρ is non-negative; in 
this case is convex and the critical point is a minimum of . Overall, 
the optimization problem can be rewritten as: 

= +N̂ N F N( ) argmin [ ( ) ]
N i

i
i

i i
0

2

(10)  

Identifying = 1
2 , the constrained deconvolution is equivalent to a 

sparse deconvolution with an adaptive sparsity prior λ. Since N̂ ( )i i
is a decreasing function of ρ, the expression for λ reads: 

= + ˆF N Tmax{ , [ ( ) ] }
i

i icon oopsi
2 2

(11)  

In practice, λcon−oopsi is found by alternatively solving Eq. (7) and 
updating λ, decreasing it if the reconstruction error is too large, and 
increasing it otherwise. This non-analytical approach performs better 
than fast-oopsi (see Section 3.1 and Fig. 1). 

2.3.2. Blind sparse deconvolution 
We propose a different analytical expression for λ, inspired by  

Selesnick (2012). It is deduced from the analysis of the optimization 
problem for two simple configurations, in which there is either zero or 
one spike in the original signal. We show that this solution combines 
the computational speed of fast-oopsi and the robustness of con-oopsi. 

2.3.3. Spikeless signal 
In the following, we use matrix notations and rewrite the cost 

function as: 

= +N F N F N 1 N( ) 1
2

[ ] [ ]T T
(12)  

The gradient writes: 

=
= +

F N 1
N F 1

( )
( )

T

T T
N

N (13)  

Let us first assume that the signal is spikeless, such that Fi = σ  εi, 
where  εi is a Gaussian white noise. Since >N( ) 0T , we have: 

Fig. 1. Example of fluorescence signal and inference results for various de-
convolution frameworks. The fluorescence signal was generated using para-
meters f = 10 Hz, σ = 0.4, a = 1, τr = 0.1, τd = 0.5. The naive inference cor-
responds to the result of Eq. (5). 
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P
N K

( ) ( , )
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i

T
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2 2

(14) 

where = +x( ) x
e

2

z2
2 , and =K K i t[ ]i

2

Therefore, if λ = λ1 ≡ z1σ ∥ K∥ with z1 large enough, the gradients 
are almost always negative, and the global optimum of is =N 0ˆ . 
Hence for instance, setting z1 = 2.326, yields a probability of false 
positive event per time bin PFP  <  0.01. 

2.3.4. Single spike signal 
We now examine a configuration in which a single spike is present 

in the data: 

=
= + +

N
F t i ia K[ ( 1)]

i i i

i i

0
,

0

0

(15)  

The gradient writes: 

= +a KN N 1( )( )T T
N

0 (16)  

We look for an optimum of the form =N̂ a ni i i, 0. The optimization 
with respect to n gives: 

=
+

+
+

+
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a
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2 2 (17) 

where the last line assumes that =i
T

1

=K i i t K i t K[( ) ] [ ]i
2

0
2 2, which is true provided that i0 

is far from the boundaries. Thus, if the spike position is known in ad-
vance, the inferred spike is a thresholded Gaussian variable. 

Importantly, the effective noise level = a K that appears in this 
expression is smaller than 

a
by a factor 

K
1 . This has an important 

consequence: since max(K) = 1, the norm =K K i t( )i
2 of the 

discretized kernel is proportional to M where M is the typical number 
of time frames over which K is non-zero. Thus, a M as if the noise 
had been averaged over the duration of the transient. This suggests that 
even signals with low SNR can be efficiently inferred provided that the 
spike-induced fluorescence transient is sufficiently well sampled. 

Eq. (17) shows that when λ is too large, the probability that a given 
spike is undetected reads: 

= = =
( )

P P n
K a

[ 0] K
FN

2

(18)  

Therefore, setting λ ≤ λ2 ≡ ∥ K ∥2 a − z2σ ∥ K∥, with, say, 
z2 = 2.326, guarantees a low false negative rate (FNR) as the prob-
ability that a spike is detected is then larger than 0.99. 

The sparsity prior λBSD is chosen to minimize both the FPR and FNR. 
For a = 1, σ = 0.1, τr = 0.1, τd = 0.5, f = 10Hz, λ2 = 4.1379 is much 
higher than λ1. In this case, setting λBSD = λ1 is the best solution, as 
smaller values of λBSD lead to less signal deformation. In contrast, for 
configurations such that λ1  >  λ2, i.e. when > = +

a K
z z

max
1 2

, it is 
impossible to satisfy both constraints (low FPR and low FNR); in this 
case we use the crossover value = =+ ( )z a K

z z 1 max
1

1 2
. 

2.3.5. Sparsity prior for BSD 
To summarize, in our blind sparse deconvolution (BSD) algorithm, 

the sparsity prior is set analytically as: 

=
+

z K a K
z z

min ,BSD 1
1 2 (19) 

where = =
+K K i t( )i

2 is the L2 norm of the discretized con-
volution kernel K, and z1, z2 are two numbers ∼2 that control the 
precision and recall, respectively. 

We expect the sparse deconvolution to perform more consistently 
with λBSD than with λoopsi. Indeed, if a = 1, σ = 0.1, τr = 0.1, τd = 0.5, 
Δt = 0.1s, ν = 1Hz, we find λoopsi = 0.1 and λ1 = 0.51; using λoopsi 

therefore results in multiple noise-induced false spikes. Conversely, for 
σ = 0.25 and ν = 0.1 Hz, we have λ1 = 1.25, λ2 = 3.39 λoopsi = 6.25; in 
this case, λoopsi is too large and most, if not all the spikes are missed. 

Robust performances are also expected using λcon−oopsi, although a 
slightly larger FPR is expected compared to λBSD. Indeed, in the absence 
of spikes, N = 0 satisfies the reconstruction constraint in the large T 
limit and is correctly found by the algorithm. In the presence of spikes, 
we expect λcon−oopsi to be slightly lower than λBSD, resulting in small 
overfitting of the noise. Indeed, as soon as λ  >  0, the spikes are on 
average underestimated, see Eq. (17); therefore, any ‘good’ choice of λ 
that perfectly filters the noise also underestimates the reconstructed 
trace K N, yielding a reconstruction error 

>= F i i t T( a nK[( ) ])i
T

i1 0
2 2 and is therefore not a valid solution 

for the constrained optimization. Instead, λ is further decreased until 
false (noise-induced) spikes appear and reduce the reconstruction error 
below σ2T. 

2.3.6. Thresholding the BSD inferred signal 
Some applications, such as network connectivity inference, may 

require to threshold the signal in order to get a binary spike train. 
Unlike previous methods, BSD provides rationale for choosing a 
threshold. Indeed, the computations performed in Sections 2.3.3 and  
2.3.4 show that the (unnormalized) inferred spikes in the absence (resp. 
presence) of spikes are thresholded Gaussians variables, with means 

K 2 and a
K 2 , respectively, and identical variance 

K

2
2 . Picking 

a threshold that separates the two distributions yields: 

= z
K

u a
K

min ,3
BSD

2 (20) 

where z3 is a quantile of the normal distribution, and u a number be-
tween 0 and 1, say, 0.5. When θ equals the left term, the vast majority 
of the noise is efficiently filtered out such that any non-zero value in the 
output signal can be safely assigned to a spike; the right-hand term in 
turn prevents the threshold from becoming larger than the signal itself. 

2.4. Theoretical limits on the precision–recall and temporal resolution 

We now present a similar analysis to derive theoretical estimates of 
the true and false positive rates, and of the temporal accuracy of the 
predicted spikes trains as function of the generative model parameters. 
The corresponding scripts are also implemented in the BSD package, 
and can be directly applied for a given fluorescence recording once the 
generative model parameters have been inferred. 

2.4.1. Precision–recall for isolated spikes 
The theoretical false positive and negative rates (FPR, FNR) are first 

computed within the sparse deconvolution framework with λBSD. For 
the false positive rate, the computation was performed in Section 2.3.3: 
we obtain a probability of false positive rate per time bin: 

=
+

P z a K
z z

min 1,
( )FP 1

1 2 (21)  

For the false negative rate, we follow a similar reasoning as in 
Section 2.3.4: we consider a signal of the form 

= +F an K t[ t i ]i i0 0 with t0 = (i0 − 1)Δt + δt0 and 0 ≤ δt0  <  Δt. 
Note that we have now relaxed the previously made approximation 
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+K t K t i i[ t i ] [ ( 1)]0 0 in order to probe the effect of inter-
mittent sampling. We obtain a lower bound 4 for the probability of false 
negative per spike: 

=

+

= +

N̂

n n t z z
z z

P
n t z

Nargmax ( ) a n

max[ ( cos ( ) min( ˜, ), ˜ ), 0]

( ) [
cos ( ) min( ˜, )

˜
]

N
i i

z
z z

0
,

0 0 1
1

1 2

2

FN 0
0 0 1

0

1
1 2

(22) 

where 

=
+

=

=

=
t

K K t
K

a K

cos ( )
[ t l] [ t l ]

[ t l]

˜

l

l
2

(23)  

Note that the probability depends on δt0; for instance if τr = 0 and 
δt0  <  <  Δt, spikes emitted right after a measurement yield low-am-
plitude fluorescent transients and are thus likely to be missed. Overall, 
the probability of false negative is given by: 

=
=

P
t

P t d t1 ( )
t

t
FN 0 FN 0 0

0 (24)  

2.4.2. Temporal resolution for isolated spikes 
Intuitively, the temporal resolution depends on three factors: the 

signal-to-noise ratio, the sampling rate, the shape of the fluorescence 
kernel. It is characterized by the point-spread function (PSF) of the 
inferred spikes with respect to the true spikes, namely the conditional 
average given a fluorescence signal with a single-spike at t = 0: 

= =+N̂ NPSF [ | ]t t t t
0

,0 0 (25) 

where =N̂ Nargmin ( )N is the spike train inferred from the fluores-
cence signal see Eq. (12) and the expectation is taken over the Gaussian 
noise realizations, see Eq. (1). The distribution of N̂ is not tractable 
and, therefore, the PSF cannot be derived by exact analytical compu-
tation. Instead, we use two heuristics to obtain analytical insights into 
the width of the PSF and an efficient numerical approximation of the 
PSF. 

For the analytical computation, we focus on the distribution of the 
initial negative gradients =|N N 0i

rather than the one of N̂ . Consider 
indeed the gradient descent optimization dynamics: because of the L1 

penalty, large components Ni tend to grow faster and to screen neigh-
boring small components, yielding sparse solutions with only few non- 
zero components. It is therefore likely that the largest components of N 
after one gradient descent step (after which =N |i N N 0i

) remains the 
largest at the end of the optimization. Hence if the initial negative 
gradient is larger at position i0 + δ than at position i0, we expect the 
inferred spike N̂ to be similarly delayed with respect to the true spike 
position. The probability of such an error can be computed as: 

= + +

= + +

+

=

+
=

N
a K K t i i

N
a K t K t i i

N
a K t K t

| [ ( 1)]

| cos ( ) [ ( 1)]

2 sin ( )
2

2 sin ( )
2

(0, 1)

i
N

i
i

i
N

i
i

0
2

0

0
2

0

2 2

0

0

(26) 

where the angle θ(δt) is defined in Eq. (23). 
Thus, the initial gradient at the offset time i0 + δ is higher than its 

value at the spike time i0 with probability 
a K sin t( )

2 , typically 

resulting in a time-shifted inferred spike. This results in a typical timing 
error δt on the spike position of the order of: 

=t s t t
a K

. . sin ( )
2 (27)  

This timing error is a non-trivial function of the kernel K and the 
noise level. The higher the effective noise level 

a K
, the higher δt. The 

second factor is small for rapidly growing θ(δt), i.e. when the overlap 
between the kernel K(t) and its lagged version K(t + δt) is a fast de-
caying function of δt. Hence, the 'sharper’ the kernel, the lower δt. 

For the numerical approximation of the PSF, we restrict the opti-
mization search space to solutions of the form = +N̂ n( , ) a ni i i, 0 . 
Using this simplification, the optimization over n can be carried out 
analytically (similarly as Eq. (22)) for each τ, and PSFτ is given by the 
probability that the optimal solution is located at τ. After rearrange-
ment, we obtain: 

P X X XPSF ( 0 & ) (28) 

where X , is a Gaussian vector with mean 
= +X t[ ] cos( ( )) min ,z

a K
z

z z
1 1

1 2
and covariance 

=X X tCov( , ) cos ( | |)a . 
Eq. (28) is efficiently evaluated by Monte Carlo, with values of 

|τ| ≤ 20 and is valid for the discrete generative model; the computation 
can be generalized for the continuous generative model, see Appendix 
D. The final formula is given by: 

=
= <t

t
tPSF( ) 1 PSF ( )

t

t
t t t2 0 0

0
0

(29) 

where PSFτ(δt0) is the discrete PSF of Eq. (28), but with a term cos 
(θ(τΔt − δt0)) instead of cos(θ(τΔt)) in the mean value of Xτ. 

2.5. Hyperparameters learning 

All sparse devonvolution methods rely on the knowledge of the 
generative model's parameters. However, owing to the variability in the 
calcium reporters intracellular concentration and other biochemical 
cellular processes, these paramaters may significantly vary from ex-
periment to experiment, and for different neuronal types. In the fast- 
oopsi implementation, the authors proposed to infer the parameters (a, 
b, σ, ν) in an iterative way: an initial guess is made, deconvolution is 
performed, parameters values are then updated based on the decon-
volution result, whereas for con-oopsi, the authors propose to estimate 
σ, K only once. We follow the same iteration-based approach as fast- 
oopsi, but the parameters are inferred and refined differently; we also 
add a method to infer and refine the kernel K. 

2.5.1. Initial estimation of the parameters 
We are given a time series of the form = + +a bF N , with 

unknown a, b, σ, K. In the following, we assume that the baseline is 
constant or equivalently that the variable baseline has been previously 
estimated and subtracted from the signal. From the knowledge that N is 
non-negative and sparse, we deduce that:  

• The baseline b is essentially the most often observed value of F; the 
data histogram is computed, and b is estimated as the center of the 
interval with highest frequency. Using the median of S also provides 
a good estimator.  

• All activity below the baseline originates from the noise, hence 
F′ = F[F  <  b] − b follows a half-Gaussian distribution 
min[ (0, ), 0]2 ; it is fitted to deduce σ. 

4 We approximate the FNR as the probability that the Dirac solution at i = i0 

is zero; both probabilities are not strictly equal because there is a small prob-
ability that this solution is zero but other solutions at different time steps are 
non-zero 
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We estimate the convolution kernel K through the signal auto-cor-
relation matrix. Indeed, observe that: 

=

+ +

+ +A l F F F a N N N K i j

t K i l k j t

( ) [ ] [(

1) ] [( 1) ]

F i i l
j k

j j k
i

l

2 2

,

2

2
,0 (30)  

Under the assumption that the spiking events Ni are independent, 
identically distributed Poisson variables, we have 〈NjNj 

+k〉 − 〈N〉2 = a2νΔtδk,0 and Eq. (30) can be simplified as: 

= + +

+

=

=

A l a t K j t K l j t

A l K j t K l j t

( ) [ ] [( ) ]

( ( ) ) [ ] [( ) ]

F
j

l

F l
j

2 2
,0

2
,0

(31)  

The auto-correlation matrix can be estimated from the data as 

= +A l F Fˆ ( )F T i i i l
F

T
1 2

i i . Together with the previous estimate of σ, 

the left-hand side of the equation can thus be estimated. In practice, ÂF
obtained is not necessarily positive definite, because the estimate of σ 
can be incorrect – this can lead to very bad estimates of τr, τd. To mi-
tigate this issue, we subtract min(σ2, λmin) instead of σ2, where λmin is 
the smallest eigenvalue of the Toepliz autocorrelation matrix. The right- 
hand side is the overlap between the kernel K and its delayed version 
K′(t) = K(t + lΔt). We can normalize both terms to 1 for l = 0, and use a 
least square fit to estimate K. 

Lastly, the spike amplitude a and frequency ν can be deduced from 
the following equations, that hold under the model assumption: 

=

=

F a t K i t

F F a t K i t

[ ]

[ ]
i

i

2 2 2 2

(32)  

Although they yield very good results for synthetic datasets, these 
estimators can fail in several frequently encountered situations in 
practice:  

• When the neural activity is not sparse, we do not expect b to be the 
most frequent fluorescence value. An error in the estimation of b can 
result in a misestimation of σ as well.  

• When the neuron displays bursting activity (i.e. several spikes in 
short time intervals), the hypothesis that the Ni are independent 
usually fails. This may result in overestimating τr and/or τd. 

• In the same situation, Eq. (32) is incorrect and a can be over-
estimated.  

• When the noise exhibits temporal correlation (streaking artefacts in 
light sheet imaging, small sample drifts, fluctuations in laser in-
tensity, etc.), the white-noise hypothesis does not hold, which may 
result in a misestimation of τr and τd. 

When the estimated time constants τr and τd differ from their true 
values, r

0 and d
0, systematic estimation errors arise. Suppose for in-

stance that <r r
0 and =d d

0. Then a spike-induced fluorescence 
transient tends to exhibit a faster initial rise than expected. Hence, from 
a Bayesian perspective, such a transient is likely to be interpreted as 
two small consecutive spikes. Hence, inferred spikes will tend to be 
duplicated. In general, the nature of the error depends on the kernel 
mismatch; some simulation results are presented in Appendix B. These 
results highlight the need to refine the kernel parameters estimators. 

2.5.2. Iterative parameter estimation: adaptive blind deconvolution 
At fixed hyperparameters, the cost function to minimize is the sum 

of a reconstruction error and a sparse penalty on N: 

= +K b a K aN F N b N( , , , , ) 1
2

( , , )2
BSD 1 (33)  

We can further refine the model hyperparameters by jointly mini-
mizing this cost function with respect to both the spike train and the 
hyperparameters. In other words, we look for the convolution kernel 
that achieves the best trade-off between inferred spikes sparsity and 
reconstruction error. Such optimization yields non-trivial kernels, since 
a very sharp kernel (τr, τd → 0) would give a perfect reconstruction but 
dense spikes, whereas a wide kernel would give very sparse spikes but 
poor reconstruction. Furthermore, it can be shown that such sparsity- 
reconstruction trade-off maximization, which is also featured in Sparse 
Dictionary Learning (Mairal et al., 2009) or Blind Deconvolution in 
image deblurring (Freeman et al., 2009) is equivalent to a Maximum A 
Posteriori optimization of the likelihood, assuming a gaussian noise, a 
sparse prior for spikes and a flat prior for the hyperparameters 
(Freeman et al., 2009). In practice, we optimize over K and b iteratively 
through the following coordinate descent algorithm: 

ˆ
ˆ

K a

K K a

N N b

b N b

argmin ( , , , , )

( , ) argmin ( , , , , )

t t t

t t
K b

t
N

( ) ( 1) ( 1)

( ) ( )
,

( )

(34)  

The first optimization step was discussed in Section 2.2. The second 
optimization is a parametric temporal regression problem; it can be 
solved efficiently in +( )t

r d by introducing the cross-correlation 

= ˆX F NT i i i
1 and auto-correlation = ˆˆA N NT i i i

1 functions up 
to some cut-off +

m t
r d (see details in Appendix C). The purpose of 

this step is that if N(t) = N0, then the optimum is exactly K0 if σ is small 
or T is large. More generally (N0, K0) is a fixed point of the optimization 
dynamic in the low noise limit, and intuitively, we expect that at finite 
noise, another fixed point close to (N0, K0) exists and can be reached. 
We show in Appendix C that K0 is the global optimum in the case of 
isolated spikes and low noise level. The optimization will not necessa-
rily converge to such solution because the function N K( , ) is not 
convex, and only local minima are found. In practice, the optimum is 
usually very close to the original convolution kernel, and is reached if 
the initial estimate is good enough. The convergence can be improved 
by thresholding the spikes before updating the kernel, as it prevents 
false spikes from contributing to the cross-correlation. The iterative 
process is no longer an optimization but it still converges. 

The noise σ and spike amplitude a can be refined as well, using 

= +
>̂ˆ

â
N

K1
t t

t N 0
2

t (35) 

where the last term corrects the bias due to the sparse prior (see Eq.  
(17)) 

=
T

F N bˆ 1 [( ( ) ) ]
t

i i
2

(36)  

2.6. Super-resolution 

Most fluorescent microscopy techniques – two-photon, confocal or 
light-sheet – involves the sequential scanning of a laser beam at dif-
ferent locations within the sample. Hence, for a given dwell time of the 
laser at each neuron position, there is a trade-off between the sampling 
rate and the total number of sampled neurons. In other experimental 
fields, resolution limitations due to recording constraints have been 
significantly circumvented through signal processing algorithms. For 
instance, super-resolution microscopy achieves imaging at higher re-
solution than the diffraction limit (Rust et al., 2006; Huang et al., 2008; 
Fernández-Suárez and Ting, 2008; Heilemann et al., 2008; Hell, 2009), 
and compressed sensing applied to MRI allows to drastically reduce the 
number of measurements required to reach a given resolution (Lustig 
et al., 2008). These algorithms rely on the hypothesis that the original 
signal is sparse in a certain basis; it is therefore tempting to apply them 
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to our problem, given that neural spikes are sparse in the canonical 
basis. This possibility had been discussed in the context of Bayesian 
inference (Vogelstein et al., 2009). Temporal resolution was shown to 
be slightly improved in very specific settings, i.e. when using prior 
knowledge of inputs (stimulus) and spiking history dependence of the 
neuronal activity. In this section, we extend the Blind Sparse Decon-
volution framework to super-resolution, i.e. we develop a method to 
infer spiking events timing with a temporal resolution beyond the 
sampling rate. 

2.6.1. Qualitative analysis 
We start off with a qualitative analysis and consider the fluores-

cence signal produced by an isolated single spike of amplitude n: 

= + +F K t ba n ( t i )i i0 (37)  

Denoting =j t
t

0 , δt = t0 − jΔt ∈ [0, Δt], = ed
t
d , = er

t
r , and 

assuming for simplicity that b = 0 and that K is unnormalized, we 
write, for i  >  j: 

= +

= +

F

F

a n

a n a n

i d
i j t

t r
i j t

t i

i d

t
t

d
i j

r
t
t

r
i j

i (38)  

Thus, the observed fluorescence is a double exponential with non- 
equal coefficients of the form = +f i A B( ) d

i
r
i. Fitting the coefficients 

with a least-square method yields estimates of a n d
t
t and a n r

t
t , 

which can be converted to estimates of δt and n. Thus, it is possible in 
principle to find the exact spike position in the noiseless case, if we 
know a priori that the signal contains a single spike. Notice that this is 
possible only if λr  >  0, i.e. τr  >  0; if τr = 0, the observed fluorescence 
is a single exponential of amplitude a n d

t , and we cannot recover 
both n and τ without ambiguity.5 In the case of a noisy signal, we expect 
that super-resolution can be achieved only if 

t
r is large enough with 

respect to some function of σ. Notice also that if multiple spikes occur 
within the same time bin, the observed fluorescence transient is still a 
double exponential with non-equal coefficients, and it cannot be dis-
tinguished from the one produced by a single large spike at some 
average position. More generally, resolving two spikes in the same time 
bin would require the use of more complex convolution kernels. 

2.6.2. Generative model 
With these limitations in mind, we now extend the deconvolution 

framework to implement super-resolution. The fluorescence signal is 
constructed using a discrete generative model at a fine-grained time 
scale t

s
, where s is a non-zero integer, which is then down-sampled by 

the same factor s. This yields the following generative model: 

= + + +

= + +

= + +

=

=

F a K t
s

k j N b

F F a K i t j t
s

N b

aF N b

( 1)

( 1)

k
s

j
j
s

k
s

i
s

j
j
s

i

s

1

sT

i s
1

sT

(39) 

where Fi is the fluorescence measurement at ti = iΔt and 
=N N t( )dtj

s
j
j

( 1) t
s

t
s is the number of spikes emitted in the time interval 

j j[( 1) , ]t
s

t
s . 6 The convolution matrix is now rectangular, of size 

T × s T. It is not translation invariant anymore with respect to the 
spikes index j as the norm of the transient, =Kj i ij

2 now depends 
on j. Indeed, writing j = (p − 1)s + r, we have: 

=

= + +

+ + =

=

=

=

K K i t j t
s

K i p t s r
s

t

K k t s r
s

t f r

( 1)

( ) 1

1 ( )

j
i

T

i

T

k

1

2

1

2

2

(40)  

Typically, spikes occurring right after a fluorescence measurement 
(small r) have smaller ∥Kj∥ than spikes occurring right before a mea-
surement (large r). 

2.6.3. Sparse deconvolution 
A sparse deconvolution algorithm is applied to estimate the spikes 

Ns: 

= +
= =

F a N b NN̂ argmin 1
2

[ ( ) ]s

N i

T

i i
j

j
j
s

0 1

2

1

Ts

s
(41)  

Notice that, although is not invertible anymore, the optimum is 
still well-defined because of the sparsity penalty and non-negativity 
constraint. Compared to Eq. (6), the main difference is that λ is not 
uniform anymore: λj ∝ ∥ Kj∥. This property has an important con-
sequence, as can be seen by considering the limit case τr = 0, σ ≪ a. As 
discussed previously, a transient observed for i ≥ i0 can be interpreted 
either as a small spike right before the i0 measurement, or a ‘large’ one 
right after the i0 − 1 measurement. Thus, using a constant λ would 
systematically select the small spike interpretation, i.e. the inferred 
spike train would be systematically delayed with respect to the original 
spike train. This behavior is not desirable, and we would rather have 
both solutions to be degenerate global optima. This can be achieved by 
setting λ to a smaller value right after the i0 − 1 measurement. We 
show in Appendix E that both efficient noise filtering and unbiased 
estimation of spike timing for isolated spikes can be obtained with the 
following expression for j

BSD: 

=
+

=

z K
a

z z
min ,

1 2
j

j

K
s

BSD 1

r
s r1

(42)  

In practice, the optimization can also be performed efficiently using 
the interior-point method (Vogelstein et al., 2010). Adding a small L2 

penalty µ Nj j j
2, with μj ∝ ∥ Kj ∥2 often provides better conditioning of 

the hessian, and faster convergence. It also ensures the unicity of the 
solution, in particular when τr = 0. The kernel inference can also be 
adapted efficiently to support super-resolution, see Appendix F. 

2.7. Methods for performance evaluation 

The algorithm is evaluated based on three criteria: whether the 
spikes are correctly detected or not; if they are detected, whether their 
timing is accurate; and whether the inferred generative model para-
meters match the ground truth values. 

2.7.1. Spike detection 
For the spike detection assessment, we adopt the SpikeFinder main 

metric (Deneux et al., 2016), i.e. the Pearson correlation between the 
ground-truth spike train discretized at a frequency feval and the inferred 
spike train resampled at the same frequency. Resampling is performed 
as follows: (i) if feval = f/s for integer s, s consecutive frames are 
summed; (ii) if feval = f × s for integer s, we write =N N s/j j s/ . (iii) 
otherwise, (e.g. for SpikeFinder), the signal is first resampled to the 
closest multiplier or divider of feval by linear interpolation, then re-
sampled using (i) or (ii). When feval = f, the metric penalizes equally an 
undetected spike and a spike that is detected either in advance or de-
layed with respect to the true spike; when feval  <  f, the metric is 

5 In Vogelstein et al. (2009), the authors assume τr = 0 and that a is fixed. 
6 The spikes occurring between measure i − 1 and measure i are the N(i−1) 

+r ∀ r ∈ [1, s] 
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tolerant to timing errors of order 1/feval. 

2.7.2. Spike timing 
The accuracy of the timing is assessed by measuring the point 

spread function (PSF), i.e the average (over noise) of the inferred spike 
train in presence of an isolated single spike: 

= =+N̂ NPSF [ | ]t t t t
0

,0 0 (43) 

where is the lag. Ideal point spread functions are centered around 
0 and decay fast to ∼0 with |τ|. 7 . Then, the timing error can be 
characterized by the mean and standard deviation of a Gaussian curve 
fitted the point spread function.8 

A naive estimator of PSF would be the cross-correlation between the 
ground-truth spikes and the inferred spikes = = +̂X N NT i

T
i i

1
1

0 . Such 
estimator is correct when the spike train are Poisson-distributed, but is 
biased when the spikes are temporally correlated: in the best case 
scenario where the spike is perfectly recovered =N̂ N ii i

0 , we obtain 
the auto-correlation of the spike trains = = +X N N AT i

T
i i

1
1

0 0 . To 
overcome this issue, we estimate the PSF as the kernel of a linear 
temporal regression model: 

= +
=

N N tˆ PSF ( )t
m

m
0

(44)  

The least square estimator for the PSF is then: 

=
= A i j

PSF X
( )

1

ij (45) 

where PSFτ, Xτ are indexed formally as vectors R, X. 
This estimator is defined for N0, ̂N with identical sampling rate; if 

N̂ has lower sampling rate, it is first upsampled using the above pro-
cedure. 

2.7.3. Generative model parameters 
Finally, we assess the accuracy of the blind generative model 

parameters inference. For simulated train spikes, ground truth gen-
erative model parameters exist and they can be directly compared with 
the inferred ones. For real fluorescence data with joint electro-
physiological recordings, we derive ‘ground truth’ generative para-
meters using the knowledge of the spike positions. The kernel para-
meters and the baseline are obtained by minimizing the following mean 
square error: 

= +

=

F K i j t a N b

b b a

MSE [( 1) ]

( , , ) argmin MSE( , , , )
i

i
j

j j

r d b r da

0
2

GT GT GT
, , , 0r d (46) 

where the ground-truth spikes are discretized at the fluorescence sam-
pling frequency. Note that we relax the hypothesis that all transients 
have the same amplitude a, and optimize over all the amplitudes aj ≥ 0. 
This is particularly important for spike bursts, where strong non-linear 
effects are observed. In practice, the optimization is carried out by using 
the exact same algorithm as for the fully blind setting, but with a po-
sition-dependent sparsity prior λi that takes the value 0 for positions 
where a ground truth spike is present and a large value (e.g. 20) else-
where. Once inference is performed, the transient amplitude a is com-
puted as the average transient amplitude ( )a N/( )j j i i

0 . 

3. Results 

The blind sparse deconvolution (BSD) method, whose algorithmic 
details were presented in the preceding section, allows for unsupervised 
spike inference, i.e. both the algorithm hyperparameters – sparsity prior 
λ and generative model parameters – kernel time constants τr, τd, 
transient amplitude a, noise level σ - are automatically evaluated. BSD 
can infer spike trains at or beyond the fluorescence sampling rate. 
Importantly, the expected performances of BSD can be predicted as well 
and this possibility is integrated in the publicly available program. 

Section 3.1 is dedicated to simulated data; we demonstrate that the 
choice of sparsity prior outperforms other methods in terms of spike 
and/or computational speed and that the kernel parameters can be 
accurately recovered using our iterative approach. We also demonstrate 
super-resolution capabilities for a wide range of experimental condi-
tions. In Section 3.3, we apply BSD to the SpikeFinder contest, a col-
lection of joint electrophysiological and fluorescence recordings. We 
show that (i) our choice of sparsity prior outperforms others (ii) the 
kernel inference is accurate, allows robust performance even in the 
absence of training data and can improve spike detection performance 
when interneuron variability is important. (iii) The predicted temporal 
errors are consistent with empirical errors and that integrating it into 
the prediction can improve spike detection. (iv) Super-resolution sig-
nificantly increases the temporal accuracy for some datasets. Overall, 
our best submission is competitive across all datasets with state-of-the- 
art Machine Learning algorithms, while not requiring any training data 
or hyperparameter fine-tuning. In Section 3.4, we show that BSD scales 
well to large-scale zebrafish recordings. Finally, Section 3.2 is dedicated 
to experimental design: we use BSD to predict the expected accuracy for 
various standard calcium reporters and imaging parameters. 

3.1. Simulated data 

3.1.1. Spike detection accuracy 
In BSD, the sparsity prior λBSD is computed analytically and allows 

one to simultaneously minimize, in a tractable way, both the false-po-
sitive rate (FPR) and false-negative rate (FNR) (see Methods). In con-
trast, the expression λoopsi used in the fast-oopsi algorithm (Vogelstein 
et al., 2010) offers no guarantee that either is small in all situations (see 
Methods). This issue has motivated the recent development of the 
constrained-oopsi algorithm (Pnevmatikakis et al., 2016) where the 
sparsity prior is determined iteratively. Fig. 1 illustrates the strong 
impact of the chosen value of the sparsity prior on the inference per-
formance, as it compares the results of the four inference algorithms 
(BSD, oopsi, con-oopsi, and non-negative, i.e. with λ = 0) for a signal 
with σ = 0.4, f = 10 Hz. For fast-oopsi, the sparsity prior is too large, 
and no spikes are inferred, whereas for both con-oopsi and BSD, the 
signal is correctly recovered. Here, BSD infers slightly less false spikes 
than con-oopsi in this particular configuration. As a baseline, we also 
show the non-negative deconvolution without any sparsity prior, which 
is significantly better than naive deconvolution but shows significantly 
more false positives than con-oopsi and BSD. One may notice that the 
BSD's reconstructed signal is systematically lower than the original 
signal. This difference directly derives from Eq. (17), which indicates 
that a spike of amplitude a is reconstructed with an amplitude 
a

K 2 . However, this systematic bias in the reconstructed signal 
does not impact the quality of the inferred spike signal. 

The performances of the four algorithms are now compared on a 
systematic benchmark. A random spike train is drawn from a Poisson 
distribution of mean firing rate ν = 0.1Hz over a duration t = 10,000 s. 
The signal is generated according to the discrete model Eq. (3) with a 
fixed transient amplitude a = 1 and variable sampling frequency f and 
noise level σ. We use a double exponential kernel K with τr = 0.1, 
τd = 0.5 (see Eq. (2)), akin to a GCaMP6 reporter. Spike trains N̂ are 
inferred with knowledge of the generative model parameters and compared 

7 We have >
±

lim PSF 0 due to false positives 
8 This estimator is more stable with respect to noise and finite sample size 

than directly computing the first and second moments of the PSF. 
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with the original spike train N using the metric defined in Section 2.7.1. 
We show in Fig. 2 the correlation as function of the signal-to-noise ratio 
for various sampling frequencies, and at evaluation frequencies feval = f 
(top row) and feval = 10 Hz (bottom row). 

We observe that the fast-oopsi algorithm sometimes performs very 
well (f = 100 Hz, high SNR) sometimes equivalently as con-oopsi and 
BSD (f = 100 Hz, lower SNR), but often very poorly (f = 20 Hz, 
σ  >  0.2); Such unreliability may be highly detrimental in actual ex-
periments. BSD and con-oopsi yield comparable results, with BSD 
slightly outperforming con-oopsi in most configurations and particu-
larly at low sampling rate (f = 1 Hz). The non-negative deconvolution 
without sparsity prior baseline is more stable than oopsi (as was pre-
viously reported in Pachitariu et al. (2018)) and performs equivalently 
as BSD and con-oopsi at high SNR, but, as expected, has a significantly 
higher false positive rate than BSD and con-oopsi at low SNR. Similar 
results are found when increasing the firing rate (see same simulations 
for ν = 1 Hz, Supplementary Fig. 11); then differences tend to vanish at 
large firing rates (same experiment for ν = 5 Hz, Supplementary 
Fig. 11). 

We also compare the computational cost of the various algorithms. 
BSD, non-negative deconvolution and fast-oopsi all share the same core 
algorithm and therefore have similar computational cost. In contrast, 
the con-oopsi implementation is slower because the sparse deconvolu-
tion has to be performed many times with different values of λ until 
convergence is reached. In practice, for experiments performed on a 
MacBook Air 2013, with 1.3 GHz Intel Core i5, we find a 3- to 25-fold 
increase in computation speed, depending on the array size. Our ex-
periments shows that the number of iterations can be suprisingly large 
in practice. In particular, if the noise level is underestimated by con- 
oopsi, the error constraint is tighter and adding the positivity constraint 
may lead to no solutions at all – yielding many iterations in vain and 
increased computational time, see Table 1. This reflects in the fact that 
the computing time is largely dependent on whether or not the noise 
level is provided. 

Notice that the exact gain in speed depends on which version of con- 
oopsi is used (here, Matlab implementation, con-oopsi version of Dec. 
2015, with cvx). Although we did not test the PAVA optimizer 

(Friedrich et al., 2017), we expect a gain of the same order of magni-
tude between constrained-PAVA and BSD-like PAVA. Such a difference 
in computation load may prove highly beneficial for real-time inference 
in high data-throughput recordings, as illustrated in Section 3.4. 

3.1.2. Kernel inference accuracy 
When deconvolution is performed with an incorrect kernel, sys-

tematic biases arise in the inferred spike trains and the accuracy de-
creases both in terms of spike timings and spike detections: for instance, 
spikes may be split into two time frames if the rise time is too short, or 
some spikes may be missed if the decay time is too long, see Appendix B 
and Fig. 10 for a detailed study. We now relax the assumption that the 
generative model parameters are known and attempt to retrieve them 
from the raw fluorescence recordings. For long recordings of Poisson- 
distributed spike trains with sufficiently high signal-to-noise ratio and 
purely white Gaussian noise, the task is relatively easy. Indeed, the 
autocorrelation function follows exactly Eq. (31), and the initial kernel 
estimation is excellent. However, most real datasets feature bursts of 
spikes, temporally correlated noise, artifacts, limited spike counts and 
low signal-to-noise ratio. Under these conditions, Eq. (31) becomes 
incorrect. 

We thus build a more realistic collection of synthetic fluorescence 
traces as follows: for each recording of the SpikeFinder dataset (see next 
section), we generate five synthetic fluorescence recordings according 
to the generative model of Eq. (1) using the actual spike train measured 

Fig. 2. Comparison of the reconstruction performances on synthetic data between BSD, con-oopsi, oopsi, and non-negative deconvolution. For each algorithm, the 
correlation between the inferred and ground truth spike train is shown as a function of the noise-to-signal ratio. The different plots correspond to various sampling 
frequencies f and evaluation frequency (indicated on the y axis legend). 

Table 1 
Comparison of BSD, fast-oopsi and con-oopsi computational speed. For con- 
oopsi, under-estimation of the noise level σ, even for synthetic data, can lead to 
a large increase in computational time.      

Nframes BSD/fast-oopsi (s) con-oopsi (s) con-oopsi σ user-provided  

104 0.7 2.4 2.1 
5104 2.6 8.2 8.3 
2105 10 84 45 
5105 27 529 128 
106 49 1594 290 
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by electrophysiology and the rise and decay time constants and signal- 
to-noise ratio inferred from the recording (see next section). This syn-
thetic dataset has diverse spike counts, signal-to-noise ratios, sampling 
rates, kernel parameters and spiking patterns. We jointly infer the spike 
trains and kernel parameters using either BSD or adaptive BSD 

(iterative parameter estimation). Results are shown in Fig. 3. Panels (a) 
and (c) show the outcome of the initial kernel estimation, compared 
with the ground truth kernel values. We find that the decay time is 
often vastly overestimated. This systematic bias reflects the existence of 
large temporal correlations in the experimental spike signal whereas 

Fig. 3. Kernel inference benchmark for realistic simulated data For each recording of the SpikeFinder datasets (see Section 3.3), we generate five simulated 
fluorescence traces according to Eq. (3) using the actual spike trains, and signal-to-noise ratios and kernel parameters estimated, see Section 3.3 for derivation of the 
generative model parameters. Then, BSD and adaptive BSD are applied to infer the spike trains and the kernel parameters. Panels (a),(b): ground-truth rise and decay 
time constants vs inferred values using BSD. Panels (c),(d): Same, with adaptive BSD. In all panels, crosses denote spike recordings with fewer than 20 spikes. 
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the inference model assumes none. The algorithm thus tends to confuse 
spike bursts with long fluorescence transients, and the kernels are 
therefore poorly inferred at first. However, after kernel refinement 
(Panels (b) and (d)), the inferred kernel becomes very similar to its 
experimental counterpart in most experiments. Upon closer inspection, 
we can identify the main sources of error for the algorithm. Coarse 
errors arise when the algorithm starts from largely incorrect initial 
kernel values and ends up trapped in a wrong local minimum of the cost 
function. These errors can be easily avoided by providing realistic 
bounds for the rise and decay time constants. For all the remaining 
cases, three main factors affect the quality of inference parameter, see 
Supplementary Fig. 13: the spike count (higher is better), the effective 
signal-to-noise ratio (higher is better) and the spike ’burstiness’, i.e. the 
deviations from Poisson-distributed spikes (lower is better). 

3.1.3. Super-resolution 
Fig. 4a shows an example of reconstruction of a signal generated at 

f0 = 20 Hz, and sampled at 5 Hz. We observe a good agreement with the 
original spike train. In particular, it appears that in spite of the sparse 
sampling, the onsets of the green and dark curves transients are very 
close to one another. 

We test our algorithm on synthetic datasets generated using the 
model Eq. (39) at f0 = 500 Hz, with τr = 0.1, τd = 0.5, spike frequency 
ν = 2 Hz. The fluorescence signal is down sampled to recording fre-
quencies ranging from f = 1 Hz to 500 Hz. Spike trains are inferred with 
and without super-resolution. For super-resolution, we use a frequency 
gain =s f

f
0 in order to reconstruct a spike train at the original frequency 

f0. We perform the spike inference for various sampling frequencies and 
noise levels, and we estimate the point spread function of the inferred 
spike train (i.e. the average response to a single spike, see the method in 
Section 2.7.2). Results are depicted in Fig. 4(b) and (c). They demon-
strate that super-resolution is perfectly workable at small noise levels, 
and that a significant resolution gain can be achieved at intermediate 
noise level typical of actual experimental conditions. For instance, at 
f = 10 Hz, SNR = 5, the point spread function width is ∼2× smaller 
than without super-resolution. Fig. 4(c) shows that the gain in resolu-
tion becomes significant as soon as f ≳ 4 Hz. 

3.2. Theoretical limits of calcium reporter accuracy 

The fundamental motivations for spike train inference are to de-
noise the fluorescence signal and to improve the temporal resolution of 
the neural recording. Theoretically, if the generative model is correct, 

the convolution kernel is known and the signal is noiseless, then perfect 
retrieval of the spike train in terms of detection and timing can be 
achieved. Because of the noise, the accuracy is in practice limited by the 
rise and decay times: some spikes can be missed, have a wrong timing 
or be split across two successive time bins (see Appendix B and Fig. 10). 
These limitations have been characterized quantitatively in Wilt et al. 
(2013) in the context of Bayesian inference, when the noise is Poisson- 
like, τr is negligible and without super-resolution. However, no such 
analysis has been performed for sparse deconvolution algorithms. 

We derived in Section 2.4 theoretical bounds of performance of our 
deconvolution algorithm; we present hereafter the main findings. We 
display in Fig. 5a the true-positive rate (TPR) for different sampling 
rates, as a function of the noise level for τr = 0.1, τd = 0.5. The false- 
positive rate (FPR) is set at 0.01/frame (i.e. λBSD = λ1 and z1 = 2.366, 
see Methods). An important insight of this graph is that at low sampling 
rate, the TPR quickly decays with the noise level because spikes emitted 
shortly after a measurement are often completely missed. Conversely, 
improving the TPR (with, e.g. z2 = 2.366) yields a large number of false 
positives at low sampling rate. Some point spread functions are dis-
played in Fig. 5b-inset for typical calcium indicators. We used the 
parameters: (i) GCaMP6s: τr = 180 ms, τd = 0.55, (ii) GCaMP5k: 
τr = 58 ms, τd = 0.52 s, (iii) GCaMP6f: τr = 25 ms, τd = 0.38 s, (iv) 
OGB1-like: τr = 20 ms, τd = 80 ms. For the 3 first sets of time constants, 
the values are deduced from the fluorescence recordings on mice V1 
cells reported in Chen et al. (2013). 

We also display in Fig. 5b the width δt of the point spread function 
(extracted using a gaussian fit) as a function of the noise level, for a 
sampling frequency f = 60 Hz. As expected, the temporal resolution of 
the spikes can be lower than the sampling period if the noise is large, 
and we observe that reporters with large τr yield lower temporal re-
solution. 

We finally examine the impact of the sampling frequency on the 
temporal resolution. In an experiment with a fixed number of sampled 
neurons, increasing the sampling rate f ≡ Δt−1 by a factor s typically 
comes at the cost of reducing the exposure time τe by the same factor s, 
which in turn increases the noise σ by s . Therefore, there is no 
guarantee that increasing the sampling frequency improves the time- 
resolution. We display in Fig. 5c for the same set of calcium indicators, 
the inverse width δt−1 as a function of the sampling rate f, for various 
signal-to-noise ratios (SNRs) at a reference frequency of 10 Hz. We see 
that δt−1 saturates at a value that depends on the SNR and on the rise 
and decay constant times. For instance, with GCaMP6s and 
SNR10Hz = 5, increasing the frequency beyond 50Hz does not result in 
improving the temporal resolution. 

Fig. 4. Super-resolution for synthetic data. (a) Example of super-resolution inference: a fluorescence signal is generated at f0 = 20 Hz, sampled at 5 Hz and re-
constructed at 20 Hz. Parameters: τr = 0.1, τd = 0.5, σ = 0.2, a = 1. (b) point spread function at 10Hz for various noises. Notice a smaller width than the sampling 
interval 0.1 s (c) Inverse width δt−1 of the point-spread function, as function of the sampling frequency for regular reconstruction (full) and SR reconstruction 
(dotted). 
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The observation that the temporal resolution saturates at high 
sampling rate can be understood by examining Eq. (27): asymptotically, 
we have K t , and since t , the effective noise level 

a K
reaches a well-defined limit – and so does δt. 

3.3. Joint electrophysiological and fluorescence recordings: the SpikeFinder 
contest 

SpikeFinder (http://spikefinder.codeneuro.org/) (Berens et al., 
2018) is a public contest for spikes train inference from calcium re-
cordings. It consists of a compilation of 10 datasets of joint electro-
physiological and calcium recordings from mouse V1 or retina, for six 
different calcium probes (OGB-1,GCaMP5k,GCaMP6s,GCaMP6f, 
jRCaMP1a,jRGECO1a) at various sampling rate, see Table 2. The data 
was compiled from various sources (Theis et al., 2016; Akerboom et al., 
2012; Chen et al., 2013; Dana et al., 2016). All the recordings are up-
sampled to f = 100 Hz, and the metric used to assess performance is the 
correlation between the inferred spike train and the electro-
physiological spike train, computed after downsampling at 20 Hz. 
Dozens of algorithms based on Supervised Machine Learning, 

generative models and others have been benchmarked on SpikeFinder, 
and the results are publicy available. 

We benchmark several inference algorithms and postprocessing 
variants on the SpikeFinder dataset using the following pipeline: 

• Preprocessing. For all datasets, we started from the raw data, be-
fore upsampling or detrending. Indeed, when the fluorescence is 
upsampled, the noise becomes temporally correlated between time 
frames and the white noise assumption used to compute the sparsity 
prior λ is violated. Then, each fluorescence recording is normalized 
(zero mean and unit variance). The variable component of the 
baseline is further removed by substracting a moving percentile 
(quantile q = 0.15, variable window size ∈[10s, 60s] adjusted by 
validation). Such baseline slow modulations are unrelated to the 
calcium signal but reflect experimental artefact such as photo-
bleaching or minute axial motions of the specimen.  

• Initial values of rise and decay time. We tested four initialization 
procedures: Blind: no information is provided and the automated 
initial kernel estimation described in Section 2.5.1 is used; Litera-
ture parameters are taken from the literature, see values and 

Fig. 5. Theoretical limits of calcium reporters. (a) True positive rate of BSD as a function of the noise level for different sampling rates, for a fixed FPR of 0.01/frame, 
(b) Width of the point spread function as function of the noise for various calcium indicators, at fixed frequency f = 60 Hz, (c) Width of the point spread function as a 
function of the sampling frequency for various calcium indicators and reference noises. 

Table 2 
SpikeFinder data sets summary. For recording-specific variables, the median value across recordings was provided. The rise and decay time constants and signal-to- 
noise ratios, as defined by Eq. (2), are obtained by a parametric linear regression of the true spikes against the fluorescence, see Section 2.7.3. ★ The rise time for 
datasets 3 and 5 are unreliable because of important delays between the fluorescence and electrophysiological recordings.             

Dataset 1 2 3 4 5 6 7 8 9 10  

Calcium indicator OGB-1 OGB-1 GCaMP6s OGB-1 GCaMP6s GCaMP5k GCaMP6f GCaMP6s jRCAMP1a jRGECO1a 
Brain region V1 V1 V1 Retina V1 V1 V1 V1 V1 V1 
Number of recordings 11 21 13 6 9 9 37 21 20 27 
Spikes per recording 1012 525 1240 1304 872 363 127 96 75 232 
Sampling rate (Hz) 40 12 60 8 60 50 60 60 15 30 
Rise time (s) 0.02 0.02 0.00★ 0.03 0.00★ 0.05 0.02 0.10 0.09 0.01 
Decay Time (s) 0.95 1.00 1.10 0.55 0.99 0.65 0.33 0.97 1.32 0.68 
Noise level 

a
1.06 0.68 0.83 1.06 0.90 0.41 0.26 0.21 0.39 0.29 
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sources in Supplementary Table VI; Ground Truth for each re-
cording, we compute ground truth rise and decay time constants by 
temporal regression of the fluorescence from the true spikes, see 
Section 2.7.3. Train Set for each dataset, we use the median values 
of the ground truth rise and decay time as initial values, see values 
in Table 2. We also use the minimum and maximum values found in 
the dataset as bounds for adaptive BSD. Note that the ground-truth 
initialization is not a valid algorithm as it requires prior knowledge 
of the spikes for each neuron. We thys only use it as a reference for 
validating the kernel inference and as an upper bound of perfor-
mance.  

• Inference Algorithm We tested four sparse deconvolution variants: 
non-negative deconvolution (i.e. with λ = 0), con-oopsi, BSD and 
adaptive BSD.  

• Postprocessing. The inferred signal is upsampled to 100 Hz by 
linear interpolation, and we add a temporal offset (adjusted on the 
training set). It is mostly relevant for datasets 3 and 5 to account for 
a delay between the fluorescence time and electrophysiological 
time, in agreement with other submissions (Berens et al., 2018). 
Then, the inferred spike is optionally convolved with the point- 
spread function computed in Section 2.4.2, using the parameters 
inferred from the recording. This can be viewed as a poor man (but 
computationally efficient) version of posterior averaging: one first 
computes the most likely spike train given the fluorescence using 
BSD, and then convolve it with the point-spread function (PSF) to 
account for the temporal uncertainty, see examples in Fig. 6 

Quantitative results are displayed in Table 3 and selected examples 
are shown in Fig. 6. 

Sparsity prior. As expected, introducing a sparsity prior reduces 
the false detection rate (see Fig. 6) and significantly improves the 
correlation regardless of the kernel choice. At fixed kernel parameters, 
BSD and con-oopsi are virtually equivalent but the former is faster. 

Kernel Inference. When no training data is available, adaptive 
kernel inference is critical for performance as was found in the simu-
lated data. Even when training data is available, adaptive kernel in-
ference is always equivalent or better to using fixed kernels derived 
from training data as it takes into account inter-neuron variability. The 
most important gains is found for dataset 8, where non-linear effects 
result in large variability of decay rates. The quantitative results are 
corroborated by Fig. 7, which compares the rise and decay time con-
stants and transient amplitude a inferred by the blind algorithm with 
their ground truth counterparts. Adaptive BSD successfully captures the 
rise and decay time constants variability both across experiments, and 
across neurons in a given experiment, notably for dataset 8 where the 
decay time can vary by more than 2-fold. When the training data is of 
low quality as for data sets 3 and 5, blind inference actually outper-
forms the ground-truth. Importantly, although our best submission was 
obtained with the train set initial value, the blind and literature in-
itialization follow closely: BSD almost does not require any training 
data. We note however that the correlations are slightly smaller than 
the values found using synthetic data with similar parameters (see  
Fig. 3). This can be explained by artifacts, temporally correlated noise 
and non-linear effects. The inferred transient amplitudes also correlate 
with the ground-truth values, but less accurately. For the OGB-1 data-
sets, which have low signal-to-noise ratio, a is systematically over-
estimated because the algorithm frequently misses isolated spikes and 
can only detect bursts of consecutive spikes, see Fig. 6 panel (c); it 
therefore confuses the latter with individual spikes. Such confusion is 
expected and inevitable: for instance, in dataset 4, only bursts of more 
than 10 spikes produce visually detectable transients. For dataset 8 
(GCaMP6s), we find conversely that some transients amplitudes are 
largely underestimated, because the algorithm infers many small (but 
above threshold) spurious spikes due to artifacts or non-linear effects, 
and confuses them with real spikes. 

Temporal resolution. We assess the temporal accuracy of the al-
gorithms as follows: for each recording, we computed the empirical 
point-spread function (PSF) between the ground-truth spikes and the 
inferred spikes using Eq. (45). An average PSF is then computed for 
each dataset by weighted average of the PSFs (normalized to max= 1, 
then weighted by the number of spikes). We also predicted for each 
dataset a theoretical Point-Spread Function, using Eq. (29) and either 
the parameters of Table 2 or the parameters inferred by BSD for each 
recording. Results are shown in Table 4 and Fig. 8. Empirical PSF and 
the fluorescence kernel for the last five datasets are displayed in Fig. 8. 
The PSF have smaller width than the kernel, i.e. the temporal resolution 
is significantly improved by deconvolution; it is in general of order Δt 
(the inter-frame period) rather than τd (the calcium reporter decay 
time), see Table 2. The results hold even in the absence of information 
about the kernel: in most datasets, the temporal resolution of blind 
adaptive BSD is very close if not equal to the one of BSD with ground- 
truth kernel parameters. Importantly, we find an excellent overall 
agreement between the empirical PSF and the predicted one using the 
train set parameters: except for datasets 3 and 5 which have unreliable 
ground-truth, the predicted widths are notably more accurate than 
naive estimates such as the rise time τr or the sampling rate Δt. The 
prediction is overly pessimistic for dataset 4 because the PSF is com-
puted for an isolated spikes, whereas only spike bursts are detected in 
practice. The offsets are accurate for datasets 6–10 but not for datasets 
1–5, probably due to delays between the electrophysiological and 
fluorescence recordings. When the inferred parameters are used, the 
prediction is less accurate owing to the difficulty to estimate the signal- 
to-noise ratio for single spikes. 

Interestingly, we found that convolving the inferred spike train with 
the point-spread function computed using the inferred parameters sig-
nificantly improves the accuracy for all algorithms and kernel in-
itializations for the first five datasets, and has little to no impact for the 
last five datasets. Indeed at low signal-to-noise ratio, fluorescence 
transients may appear in advance (Fig. 6b) or delayed (Fig. 6c) with 
respect to the action potential and the corresponding point-spread 
function spans across several time windows. In contrast, datasets 
6,7,8,10 have higher signal-to-noise ratio, hence thinner point-spread 
function (see Fig. 6(d)) and convolution does not change significantly 
the prediction at 20 Hz. The small performance drop for dataset 8 can 
be explained by the overall underestimation of the signal-to-noise ratio. 

Super-resolution We tested super-resolution for the datasets 6–10 
which have the largest signal-to-noise ratios. The same pipeline is used, 
but BSD is applied with super-resolution upsamplings factors of 2 (da-
tasets 6,7,8), 6 (dataset 9) and 3 (dataset 10). Fig. 8 shows for each 
dataset the empirical point-spread function of the inferred spikes with 
(yellow) and without (red) super-resolution. Super-resolution reduces 
both the offset and the width of the point-spread function for all da-
tasets, see Table 4. The most significant improvement is for dataset 9, 
which has high a signal-to-noise ratio and a relatively low sampling 
rate. Overall, super-resolution is relevant when the main source of 
temporal error is the sampling rate rather than the noise level. 

Comparison with other submissions. Our algorithm compares 
positively with other algorithms that have been tested during the 
competition. According to the current leaderboard, it performs simi-
larly as Team 6 (OASIS Friedrich et al., 2017), and is above Team 7 
(Suite2p Pachitariu et al., 2017) of the original contest. Both teams also 
used a non-negative deconvolution framework, followed by a re-
convolution by a PSF-like kernel. Both teams used the training set to 
determine hyperparameter values: Team 6 for the convolution kernel, 
sparsity prior and PSF and Team 7 for the convolution kernel and the 
PSF; for Team 7 the sparsity prior λ = 0 was used as in the non-negative 
deconvolution baseline presented here. In contrast, our approach does 
not require any training set; the fluorescence kernel, sparsity prior and 
PSF are determined automatically for each neuron; it can therefore be 
applied to any experimental configuration. 
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Fig. 6. Selected examples from the SpikeFinder datasets. Four fluorescence traces from the SpikeFinder dataset and the corresponding inferred and ground truth 
spike trains for various algorithms. (a): GCaMP6s, f = 60Hz (dataset 8), blind initial kernel. (b), (c): OGB-1 f = 40Hz (dataset 1), train set initial kernel (d) GCaMP6f 
f = 60Hz (dataset 7), train set initial kernel. For panels (b),(c),(d), insets show the same inferred spike trains, zoomed-in on a spike to illustrate timing errors. 
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3.4. Light-sheet Imaging of Zebrafish 

Compared to standard fluorescence microscopy techniques, such as 
confocal or two-photon epifluorescence microscopy, light-sheet ima-
ging allows for a parallelization of the recording, yielding ∼100-fold 
increase in data-throughput (Panier et al., 2013; Ahrens et al., 2013; 
Wolf et al., 2015). When applied to zebrafish larvae, this enables si-
multaneous recording of the quasi-entirety of the neurons (∼100,000 
units) at typically 1 brain/second. The BSD algorithm might prove to be 
particularly useful for such experiments, as the size of individual da-
tasets precludes supervision. Furthermore, the gain in speed with re-
spect to con-oopsi should also be beneficial as it may allow one to carry 
out the spike inference on the fly. 

To illustrate this latter claim, we test con-oopsi and BSD inference 
algorithms, as well as MLspike, one of the top performing algorithms of 
the SpikeFinder contest (Deneux et al., 2016) on a typical whole-brain 
recording, consisting of 1800 successive volumetric stacks sampled at 
1 stack/second, each of them comprising 20 z-sections. The experiment 
is performed on a 5 dpf larva expressing the GCaMP5 reporter pan-
neurally. After segmentation, 255463 fluorescence traces encompassing 
the brain volume are processed independently. The baseline is com-
puted as described before and the spike deconvolution is then carried 
out using both BSD and con-oopsi on an Intel Xeon Phi (28 cores) 
computer. In line with our observations of Section 3.1.1, we find that 
BSD achieves a 7-fold increase in speed compared to con-oopsi, and a X- 
fold increase compared to MLspike, see Table 5. Under these 

Table 3 
Correlation scores for the SpikeFinder data (train sets), for various choices of inference algorithms, postprocessings (convolved with the Point-Spread function or not) 
and initial kernel values: Blind = no information at all; Literature = using parameters derived from the literature, see Supplementary Table VI; Train set = using 
parameter derived from the train set, see Table 2; Ground-truth = using different parameters for each neuron, derived using the knowledge of the spike positions. The 
best score for each dataset and configuration is indicated in bold.               

Dataset 1 2 3 4 5 6 7 8 9 10 Mean  
Calcium Indicator OGB-1 OGB-1 GCaMP6s OGB-1 GCaMP6s GCaMP5k GCaMP6f GCaMP6s jRCAMP1a jRGECO1a Score   

Blind non-negative 0.378 0.439 0.223 0.416 0.189 0.439 0.649 0.610 0.579 0.760 0.468  
con-oopsi 0.370 0.452 0.253 0.551 0.213 0.444 0.659 0.619 0.586 0.728 0.487  
BSD 0.425 0.439 0.277 0.545 0.279 0.533 0.707 0.595 0.583 0.747 0.513  
adaptive BSD 0.451 0.450 0.294 0.542 0.332 0.621 0.747 0.686 0.625 0.835 0.558  
non-negative * PSF 0.405 0.457 0.333 0.442 0.291 0.464 0.631 0.547 0.526 0.747 0.484  
BSD * PSF 0.450 0.466 0.410 0.544 0.344 0.554 0.681 0.575 0.553 0.758 0.533  
adaptive BSD * PSF 0.487 0.466 0.424 0.537 0.413 0.613 0.740 0.674 0.559 0.820 0.573 

Literature non-negative 0.372 0.391 0.288 0.419 0.312 0.562 0.605 0.646 0.580 0.760 0.493  
con-oopsi 0.372 0.427 0.288 0.541 0.312 0.562 0.627 0.651 0.585 0.794 0.516  
BSD 0.396 0.435 0.291 0.525 0.305 0.565 0.625 0.649 0.601 0.800 0.519  
adaptive BSD 0.451 0.459 0.453 0.541 0.420 0.611 0.733 0.643 0.613 0.837 0.576  
non-negative * PSF 0.421 0.398 0.396 0.451 0.411 0.547 0.584 0.601 0.537 0.733 0.508  
BSD * PSF 0.440 0.439 0.368 0.529 0.391 0.549 0.628 0.641 0.572 0.788 0.535  
adaptive BSD * PSF 0.486 0.473 0.493 0.546 0.497 0.600 0.725 0.620 0.577 0.823 0.584 

Train Set non-negative 0.456 0.457 0.441 0.442 0.403 0.600 0.701 0.654 0.588 0.794 0.554  
con-oopsi 0.441 0.458 0.440 0.550 0.405 0.600 0.715 0.654 0.588 0.811 0.564  
BSD 0.446 0.458 0.449 0.539 0.398 0.598 0.734 0.641 0.611 0.803 0.568  
adaptive BSD 0.446 0.459 0.453 0.540 0.420 0.621 0.737 0.705 0.618 0.835 0.583  
non-negative * PSF 0.488 0.467 0.485 0.473 0.479 0.598 0.681 0.641 0.536 0.777 0.563  
BSD * PSF 0.497 0.470 0.491 0.543 0.475 0.599 0.717 0.645 0.582 0.802 0.582  
adaptive BSD * PSF 0.495 0.475 0.493 0.546 0.498 0.613 0.730 0.684 0.574 0.817 0.593 

Ground Truth non-negative 0.461 0.460 0.270 0.444 0.395 0.613 0.723 0.681 0.592 0.777 0.542  
con-oopsi 0.461 0.462 0.270 0.550 0.395 0.613 0.741 0.681 0.592 0.789 0.555  
BSD 0.446 0.456 0.269 0.539 0.390 0.610 0.747 0.671 0.609 0.790 0.553 

Fig. 7. Evaluation of the generative models parameter inference for the ten SpikeFinder datasets. For each recording, we derive ‘ground-truth’ generative model 
parameters τr,τd,a by a temporal regression of the fluorescence against the spikes measured by electrophysiology, see Section 2.7.3. The values are compared to blind 
estimates obtained using adaptive BSD. (a) Rise time. (b) Decay time. (c) Transient amplitude a (each fluorescence trace is normalized to unit variance). Recordings 
from datasets 3 and 5 are represented as squares, and the others as disks. The correlation coefficient are computed either using all datasets or excluding datasets 3 and 
5 (values in parenthesis), for which the ground-truth is inaccurate due to offset between electrophysiological and fluorescence recordings. 
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experimental conditions, the computation time with BSD matches the 
duration of the experiment itself (20 min), and is thus compatible with 
real-time spike inference. Importantly, the computation time per voxel 
is fairly stable with BSD, whereas some voxels use up to 200 times more 
time to be processed than others with con-oopsi. 

These brain-scale simultaneous recordings allow one to compute the 
correlation of neuronal pairs activity, which might then be used to 

extract information regarding the large-scale functional organization of 
the brain. In this context, we examine whether the correlation statistics 
of the spike-inferred signals may be significantly different from the one 
computed using the raw DF/F signals. For this purpose, we use a 2D 
recording acquired at 20 frame/second for 20 min in a 5dpf-old zeb-
rafish larva expressing the genetically encoded indicator GCaMP3 
(elavl3:GCaMP3). Automatic segmentation allowed us to identify 8082 
individual neurons or neuropil regions of similar area, and the inference 
is then carried out on the ROI-averaged fluorescence traces. The rise 
and decay times are inferred for all neurons (see Appendix H). The 
average values of these two time-constants are then used to perform 
spike inference. 

Fig. 9a displays the time-averaged image of the brain section. 
Fluorescent traces and associated inferred spike trains for 5 re-
presentative neurons located in various brain regions are shown in  
Fig. 9b. As expected, the deconvolved spike trace appear much sparser 

Table 4 
Empirical and predicted point-spread functions for the SpikeFinder challenge. For each dataset and each algorithm, the point-spread function is fitted with a Gaussian 
distribution of mean μ and standard deviation σ. the latter are displayed as μ  ±  σ in ms. For super-resolution BSD, we also indicate in parenthesis the relative gain in 
mean square temporal error +µ2 2 compared to regular BSD.             

Dataset 1 2 3 4 5 6 7 8 9 10 
Calcium indicator OGB-1 OGB-1 GCaMP6s OGB-1 GCaMP6s GCaMP5k GCaMP6f GCaMP6s jRCAMP1a jRGECO1a  

BSD (train set) −1  ± 36 −36  ±  66 115  ±  194 −34  ±  96 142  ±  117 4  ±  19 3  ±  12 −4  ± 16 14  ±  39 13  ±  22 
adaptive BSD (blind) −1  ± 37 −42  ±  67 3  ±  136 −54  ±  111 31  ±  72 5  ±  19 5  ±  13 5  ±  19 35  ±  46 14  ±  23 
adaptive BSD (train set) −2  ± 36 −37  ±  66 98  ±  175 −31  ±  96 121  ±  93 5  ±  19 6  ±  13 1  ±  14 32  ±  46 16  ±  23 
adaptive BSD + SR (train set) / / / / / 2  ±  16 4  ±  11 −3  ± 11 19  ±  30 14  ±  19       

(-16%) (-22%) (-15%) (-37%) (-14%) 
BSD (ground truth) −8  ± 33 −40  ±  67 15  ±  129 −32  ±  87 132  ±  115 4  ±  19 3  ±  12 −6  ± 18 11  ±  42 14  ±  22 
BSD + SR (ground truth) / / / / / 0  ±  16 0  ±  11 −9  ± 16 −13  ±  25 10  ±  16       

(-16%) (-15%) (-2%) (-36%) (-28%) 
Predicted (train set) 9  ±  43 14  ±  66 0  ±  19 23  ±  167 0  ±  17 9  ±  19 7  ±  9 8  ±  12 28  ±  49 9  ±  17 
Predicted (blind) 5  ±  24 3  ±  46 3  ±  25 1  ±  60 2  ±  19 9  ±  16 5  ±  10 8  ±  18 24  ±  50 8  ±  19 

Fig. 8. Temporal accuracy of BSD for datasets 6–10 of SpikeFinder. For each dataset, spikes are inferred with adaptive BSD either using super-resolution or not. After 
resampling to 100 Hz, empirical point-spread function are computed and averaged for each dataset. Dashed blue curves denote the predicted point-spread function 
using Eq. (29) and Table 2. The corresponding fluorescence kernel is displayed for comparison. Asterisks indicate fluorescence measurements. 

Table 5 
Time for perfoming deconvolution on voxelated data.      

Algorithm Total run time Average run time per voxel   

con-oopsi 124 min 0.38s (min: 0.31 s, max: 110 s)  
MLspike 120 min 0.37 s  
BSD 18 min 0.051 s  
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and less noisy than the original fluorescent signal. The pair-wise cor-
relations, corrected for uniform coherent noise, are then computed for 
both the raw DF/F signal and the inferred spike traces. We find the 
correlation distribution to be much more peaked after deconvolution 
(Fig. 9c) which reflects in the more uniform appearance of the asso-
ciated correlation matrix (Fig. 9d). 

This difference may have two possible origins. First, it may reflect 
the gain in temporal precision brought along by the spike inference, 
which may reduce the correlation of neuronal pairs that tend to dis-
charge coherently (due to common inputs for instance), but with a 

slight systematic time-lag. A second explanation is related to the de-
noising property of the inference. In light-sheet imaging, the noise tends 
to display significant spatial correlation. This is notably due to the 
motion of small absorbing objects such as red cells that project elon-
gated shadows and produce characteristic streaking features. Provided 
that these artifacts have characteristic timescales distinct from the 
spike-induced fluorescent transient, they are not interpreted as actual 
spike by BSD. This latter interpretation is confirmed by the fact that the 
highly negatively correlated pairs in the raw fluorescence signals are 
mostly confined within thin bands aligned along the beam direction 

Fig. 9. (a) Bottom: Individual traces of 5 neurons recorded at 20Hz from 6dpf larvae, in black curve DF/F, in red resulting signal from BSD deconvolution algorithm. 
Top: Time-averaged image of a brain slice of the larva, the white arrows give the location of the 5 neurons. (b) Distribution of pair-wise correlations of DF/F (black) 
and signal after BSD deconvolution. The data were obtained from a 20 Hz, 20 min long experiment on a 6dpf larva. (c) Time-averaged image of a brain slice of the 
larva. In yellow, pairs of neurons that display a correlation on DF/F inferior to −0.4. (d) Top: Pair of neuron DF/F traces that display a pair-wise correlation 
calculated on DF/F of −0.61 and a pair-wise correlation calculated after BSD deconvolution of −0.09. Down: Pair of neuron DF/F traces that display a pair-wise 
correlation calculated on DF/F of −0.41 and a pair-wise correlation calculated after BSD deconvolution of −0.07. (e) Correlation matrix computed from DF/F. (f) 
Correlation matrix computed from the signal after deconvolution. 
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(Fig. 9e). For the same neuronal pairs, the correlation value computed 
from the inferred signal is thus largely reduced (Fig. 9f). 

4. Discussion 

The last few years have seen the release of numerous spike inference 
algorithms (Berens et al., 2018). Their increasing complexity make 
them poorly interpretable and their performance, beyond the specific 
conditions for which they have been optimized, can thus be difficult to 
predict. This is particularly true for supervised machine learning ap-
proaches. Although they can offer excellent results on datasets on which 
they have been trained (Theis et al., 2016) – which requires the 
availability of a ground truth, i.e. a simultaneous electrophysiological 
measurement of the actual spike train – they become less reliable when 
generalized to other experimental conditions and/or calcium reporters. 

In this context, forward generative models, such as non-negative 
sparse deconvolution, offer a more robust and tractable solution to this 
problem. These models are based on explicit hypothesis regarding the 
form of the fluorescence response kernel, the statistics of the spike train 
and the noise signal, and are thus less prone to systematic bias. 
However, their performance can still be very sensitive to the way the 
different model parameters are set, as exemplified by the unreliable 
results that we obtained with the oopsi algorithm. Due to a paucity of 
theoretical understanding of the expected performances, these failures 
are generally impossible to anticipate. The broad implementation of 
inference methods in functional imaging laboratories will thus depend 
on the robustness of these algorithms as much as on their optimal 
performance. Neuroscientists need algorithms that are not only efficient 
and fast, to accommodate the rapidly growing size of calcium imaging 
datasets, but that also provide them with a reliable way to assess the 
quality of the inferred signals. 

Here we introduced a novel non-negative sparse algorithm, named 
blind sparse deconvolution (BSD), which was designed to specifically 
address these issues. This fully unsupervised algorithm features state-of- 
the-art computational speed, accuracy and adaptability while in-
corporating a theoretically-grounded framework to derive estimates of 
the expected deconvolution performance in terms of temporal accuracy 
and precision–recall of the inferred spike train. These information may 
be used before recording as guidelines for experimental design, al-
lowing one to choose, in a given experimental context and for a given 
calcium reporter, the recording rate that will provide the optimal 
temporal resolution. They also can be used a posteriori to estimate error 
rates and thus provide bounds on the reliability of the inferred spike 
trains. 

One of the main assets of BSD, compared to other generative 
models, owes to the fact that most model parameters are analytically 
derived, in particular the sparsity prior. This allows a tractablity of the 
algorithm, but also a gain in speed compared to other approaches (such 
as constrained-oopsi) that require recursive evaluations of the sparsity 
prior. 

The main output of the algorithm is a continuous signal that ap-
proximates the spike-evoked calcium influx for each recorded neuron. 
This signal can be directlty used to characterize e.g. the tuning prop-
erties of a sensory-responsive neuron through correlation with the 
sensory input. BSD also provides automatic theoretically-grounded 
thresholding and thus enables to binarize the signal into active and non- 
active periods. Although such binarization comes at a cost of a loss of 
information, as revealed by the cross-correlation with the actual spike 
train, it can be necessary for the implementation of graphical circuit 
inference approaches, such as RBM (Cocco et al., 2018) or Ising models, 
(Meshulam et al., 2017; Cocco et al., 2017; Posani et al., 2018). These 
models aim at interpreting the collective dynamics of large neuronal 
ensembles by infering effective interactions between neurons using the 
measured pairwise firing statistics. In this particular context, the 

knowledge of the temporal PSF, as offered by BSD, is also very bene-
ficial as it indicates the minimal time bin over which the pairwise 
correlations can be robustly evaluated. 

In calcium imaging, the temporal resolution is generally thought to 
be limited by the recording rate. However, at high enough SNR, one 
may in principle overcome this limit. BSD thus introduces temporal 
super-resolution, which was shown to significantly increase the tem-
poral accuracy of inferred spikes on real data, yielding a temporal re-
solution better than the recording period. As both calcium reporters and 
imaging methods will gain in sensitivity and speed, this capability may 
help to reveal spatio-temporal short term dynamics, such as activity 
propagating waves, or to investigate the role of spike-timing in neural 
coding. 

Although we demonstrated that BSD provides consistent results over 
a large spectrum of reporters and experimental conditions, this algo-
rithm would benefit from embedding more features that would address 
specific conditions. In particular, we noticed that the performance tends 
to degrade when neurons display sustained periods of bursting activity. 
First, the moving percentile method may provide inconsistent estimate 
of the slowly drifting baseline in this case. [We have shown however 
that the iterative baseline estimation allows to partially correct this 
issue]. Second, kernel inference and SNR estimate become less reliable 
as bursts of activity are mistaken for individual spiking events. One way 
around would consist in constraining the inferred parameters based on 
their values estimated on neurons exhibiting sparser activity. A second 
aspect, ignored in the present implementation, is the non-linearity of 
the fluorescence response of usual calcium reporters. Since the pre-
dicted signal is continuous, this could be accounted for a posteriori in a 
straightforward way provided that an experimental characterization of 
the fluorescence vs spike-rate relationship is available. Importantly, the 
modularity of the different features introduced in BSD – sparsity 
parameter estimation, iterative kernel iteration and PSF estimation – 
makes it straighforward to incorporate them into complete calcium 
imaging packages such as CaIman (Giovannucci et al., 2019) Suite2P 
(Pachitariu et al., 2017) that address other challenges of calcium ima-
ging processing, such as spatial filtering. 

Availability 

The spike inference program BSD and its companion program for 
evaluating its accuracy are implemented in MATLAB and both available 
at https://github.com/jertubiana/BSD. By design, it is straightforward 
to infer spike trains and evaluate a posteriori the precision–recall and 
temporal accuracy for each recording. Then, users can optionally con-
volve the inferred spikes with the predicted point-spread function to 
account for the uncertainty on the spike location. Tutorial scripts are 
provided for all use cases and the scripts for generating all figures of 
this article and reproducing the SpikeFinder experiments are also made 
available. 
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Appendix A. Stability of the single spike solution and the half-spike problem 

In Section 3, we have not studied the stability of the single-spike solution. We study it here, and discuss when it is a global optimum. Assuming 

= + >ˆ { }N amax , 0 0i i i K t
K t
K t, ( )

( )
( )i

i i

i
0 2 2 and looking for the stability of the solution, w.r.t the other coordinates, we find: 

=
+N
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where = +x e( ) dux
1
2

u2
2 . Therefore, the Dirac solution is stable only if the above probability is small enough for all values of δ. Far away from 

the spike δ → ∞, the angle 2 and we recover =P K , as in the spikeless signal. On the other hand, the smaller δ, the smaller θδ and the 

probability is higher. For λ = λBSD and low noise, the above probability reduces to =P z tan1 2 ; the Dirac solution can become unstable. In 
practice, the result depends on the level of noise: for low σ, the optimum remains close to the Dirac solution, whereas for high noise, we can find 
’half-spikes’ solutions, of the form = + ±N ( )i i i i i

an
2 , , 10 0

Appendix B. Impact of kernel parameters mismatch on inference 

We systematically studied the bias in spike inference that arises when the estimated time constants τr and τd differ from their true values, r
0 and 

d
0. As illustrated in Fig. 10a–d, inferring the spikes with an incorrect convolution kernel leads to systematic errors.The nature of the error depends on 

the kernel mismatch:  

• < =,r r d d
0 0 (Fig. 10a): the inferred spikes are split in two, to compensate for the smaller rise time than expected for a single spike.  

• > <,r r d d
0 0 (Fig. 10b): the inferred spikes are in advance, to compensate for the faster rise of the fluorescence signal.  

• = <,r r d d
0 0 (Fig. 10c): the inferred spikes exhibit ’echos’ to compensate for the slower than expected decay of F.  

• = >,r r d d
0 0 (Fig. 10d): the inferred subsequent spikes are 'screened’ (lower amplitude) to compensate for the slower than expected signal 

decay. 

Fig. 10. Left: Example results of spike inference on synthetic data with mismatched convolution kernels. For each of the four figures, a fluorescence signal is 
generated with a kernel K0; inference is performed with true parameters (blue curves) and with mismatched parameters (red curves). The true and mismatched 
kernels K0 and K are depicted (insets). Systematic errors appear in the spike timings. Right: Area under curve classification performance with time tolerance δt = 0 s, 
as a function of the rise and decay time constants. The parameters used to generate the signal, depicted in red, are typical of a GCaMP6 reporter. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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We quantified how a kernel misestimation degrades the decoding performance by evaluating the relative reduction in precision–recall (area 
under curve) for various offsets of τr and τd (Fig. 10e). Interestingly, some direction of the mismatch vector can be less deleterous: when both 

> <,r r d d
0 0 or > <,r r d d

0 0, the loss in performance remains modest. These findings motivate the use of parameter refinement. 

Appendix C. Kernel inference: proof of convergence and fast algorithm 

We prove here that for isolated spikes and small noise, the cost function = +N K F N K N( , ) ( )1T1
2

2 admits solution K = K0 as local 

minimum. Denoting =N̂ N Kargmin ( , )N 0 . 
For a signal with a single spike = + +F t i ia K[ ( 1)]i i0 , if the noise is small and K is close enough to K0, we have: =N̂ a ni i i, 0, = z K . 

Optimizing over n yields: 
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Note that we recover Eq. (17) when K = K0. For a signal of multiple isolated spikes = + +F a K t i i[ ( 1)]i l l i, with > > +i i| |l l t
d r , a 

similar solution =N̂ ani l l i i, l can be derived, and is self averaging: 
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(51)  

Hence, the function depends on K only through cosθK. One can check that when < 1z
a K , the minimum is reached at cosϕK = 1, i.e. K = K0. This 

concludes the proof. Although we cannot prove more about the radius of convergence, good convergence was achieved in practice after starting from 
the initialization. 

In practice, the optimization with respect to K can be performed efficiently using standard temporal regression tricks. Observe that: 
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To go from the second line to the third line, we used the translation invariance property of , the causality of ( = j i0ij ) and wrote 
== = = +l

T
l l T1 li lj li lj 1 li lj Hence, N K( , ) depends on N and F only through:  

• the sums = =S Ni
T

i1 1 and = =S Fi
T

i2 1
2

• the unnormalized cross-correlation between fluorescence and inferred spikes = = +X l F N( ) i
T l

i l i1 .  

• the unnormalized autocorrelation function of the inferred spikes = = +A l N N( ) i l
T T l

i l imax(1,1 )
min( , ) .  

• the boundary term += + = K j i t N( [( 1) ] )j T i
T

i1 1
2

The first three terms can be precomputed in T( ) once for all, and the second and third up to a cutoff +l 5 tmax
r d , such that K(lmax)  <  < 1. 

The last one can be computed in l( )max , by noting that after T, the convolved spikes is a double exponential, with coefficients depending on the 
∼lmax last time bins. Overall, the cost function can be evaluated in l( )max and optimized efficiently. 
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Appendix D. Detailed computations for the point spread function estimation 

We assume a noisy single spike signal, = +F ta K[ t i ]i i0 , where we write formally = +t t i r( 1 )0 0 0 , with r0 ∈ [0, 1[; i.e. the spike is 
emitted before measurement i0. The likelihood becomes: 
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In the last expression, the term = + +K t i i r K t i i[ ( 1 )] [ ( 1 )]r i, 0 0 can be computed analytically for all δ and r and is in-
dependent of i0; the term +K t i i[ ( 1 )]i 0

2 is the usual ∥K ∥2 and the term involving noise can be rewritten by introducing new, correlated 
gaussian noises: 

= +

=
= + +

= +
+{ }

K t i i

K t i i K t i i

n F
K

[ ( 1 )]

0
[ ( 1 )] [ ( 1 )]

( , ) 1
2

min , 0

2

i
i

i

i
i

r a a

0

0 0

2 ,
2 (54)  

For a given r and noise realization, we can thus compute the optimal δ - and by Monte Carlo averaging, we obtain an estimate of the probability 
distribution P(δ|r). To obtain a point spread function in continuous time, it is then transformed into a continuous piecewise-constant probability 
density through: =P r( | )c c P r

t
( | )c

. 
And the overall point spread function is obtained by averaging over r, yielding: 

= +
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1

In practice, R and r are computed over a discrete grid of the form k t
s . 

For the super-resolution case, the computation is almost the same; the only difference being that we reconstruct the spikes with a thinner 
resolution. 

Appendix E. Proof of unbiased estimation for super-resolution 

We show here that the choice λj = zσ ∥ Kj∥ is best suited for an unbiased (in time) reconstruction of the spikes. We consider again the single-spike 
setting, with a single spike of a at position k0 = (i0 − 1)s + r0, for which = + +F t i ia K ( )i

t r
s i0

(2 )0 . 

We now look for optima of N K( , ) of the form =+ + +N̂ a ni s r i i r r( 1) , ,0 0 . Note that instead of doing this computation, we can simply observe 
that it is a special case of Appendix B, using reference kernel K0(t) ≡ K(t), and measurement kernel K t K t t( ) ( )t

s . 
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and 1, 2 are gaussian noises of variance unity (see Appendix D). Thus, the optimum over Δ, δ is with highest probability δ = Δ = 0, and the estimator 
is unbiased. Note that this result is expected: using the equivalence with a LASSO regression developed in Section A, we know that the coefficients 
(here, the spikes) are correctly estimated with a uniform λ only when the features (Here, K) are normalized to unity =K j1i ij

2 . 
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Appendix F. Kernel inference in the super-resolution setting 

Since the convolution matrix is not fully translation invariant in the super-resolution setting, the estimation of the kernel is slightly different. 
For the initial estimation, Eq. (30) becomes: 
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For s  >  1, this formula is different from Eq. (30). It can be shown (see Appendix G) that the right-hand side has a well-defined limit when s → ∞, 
ie in the continuous setting. 

Similarly, the iterative kernel update Eq. (52) is different: 
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The sparsity penalty becomes: 
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Hence, N K( , ) now depends on F and N through the following quantities:  

• the sum = =S i
T

2 1

• the sums vector = = +S r N( ) ( )i
T

i s r1 1 ( 1)

• the cross-correlation matrix = = + +X l r F N( , ) ( )i
T

i l s i r1 ( 1)

• the autocorrelation tensor = = + + +A l r r N N( , , ) ( )i
T

i l s r i s r1 ( 1) ( 1)

Altogether, the cost function can be evaluated relatively fast. Note that the complexity of the kernel optimization is now l s( )max
2 . 

Appendix G. Various explicit formulas for the double exponential kernel 

Various useful formulas for blind sparse deconvolution are consigned, here for double exponential kernels. 
Kernel normalization. We normalize K such that maxt≥0 K(t) = 1. This gives: 
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Kernel norms. The L1 and L2 norms are computed as follow: 
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Kernel norms for super-resolution. The L1 and L2 norms for a spike emitted at time (j − 1)s + r, r ∈ [1, s] are given by: 
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Kernel overlaps. Useful for assessing temporal uncertainty and for kernel estimation 
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Boundary term. The estimation of the kernel involves the computation of the following boundary term: 
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Kernel overlaps for super-resolution. Useful for assessing temporal uncertainty and for kernel estimation 
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In particular: 
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Boundary-term for super-resolution 

=

=

+

= + =

= +

+ +

K i t j t
s

N

M

N N

M

N N N

N

( 1)

1
( , )

1
( , ) 1

2( )

1

1

i T j
j

r d

i T
d
i T

i
d

j
s j r

i T

i
r

j
s j

r d

d
s

j d

j
s j

d

d r s j r
j

s j j d

j
s j

d r

rs
j r

j
s j

r

1 1

sT 2

2

1

Ts 1 Ts 1
2

2

4 Ts 2

2

2 Ts Ts

4 Ts 2

2

(67)  

Appendix H. Heterogeneity in rise and decay time constants in Zebrafish 

Application of BSD to zebrafish data yields heterogeneous distributions of rise and decay times. This means that different regions show different 
patterns of fluorescence bursts. We see that the heterogeneities have a spatial structure: for instance neurons in the spinal chord tend to have longer 
rising time constants than neurons in the hindbrain, and neuropil regions have longer decay time. The two possible explanations are that the spike 
patterns are different in these regions (e.g. regular vs sparse spike trains), and/or that the expression of GCaMP is significatively different. Overall, 
they motivate the use of heterogeneous time constants. 
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Appendix I. Drawback of approximating Poisson prior to exponential prior in MAP 

In order to see why approximating a Bernoulli or Poisson distribution with an exponential approximation with same mean, as is done in oopsi can 
be problematic for signal reconstruction, we consider the following single-variable inference problem: 

= +y aN (68) 

where  ε ∼ 0, σ2, N ∼ Bernoulli(ν). Given y, we wish to estimate N by MAP using either the exact or approximate prior. In the first case, P(N|y) writes: 
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such that: 
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In the second case, P(N|y) writes: 
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such that: 
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a
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(72)  

For typical values such as a = 1, σ = 0.2, ν = 0.01, we get thresholds at respectively 0.32 and 4. Clearly, all spikes (N = 1) would be missed using 
the MAP with approximate exponential prior. On the other hand, the MAP with an exact prior is an unbiased estimate, i.e. such that < N★ = ν, and 
correctly reproduces the average spike rate. 

Appendix J. Supplementary data 

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jneumeth.2020.108763.  
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