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Jérôme Tubiana 1⇑, Dina Schneidman-Duhovny 2 and Haim J. Wolfson 1

1 - Blavatnik School of Computer Science, Tel Aviv University, Israel

2 - School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
Correspondence to Jérôme Tubiana: jertubiana@gmail.com, jeromet@mail.tau.ac.il (J. Tubiana)@TubianaJer-
ome (J. Tubiana), @DinaSchneidman (D. Schneidman-Duhovny)
https://doi.org/10.1016/j.jmb.2022.167758
Edited by Michael Sternberg

Abstract

Predicting the various binding sites of a protein from its structure sheds light on its function and paves the
way towards design of interaction inhibitors. Here, we report ScanNet, a freely available web server for
prediction of protein–protein, protein - disordered protein and protein - antibody binding sites from struc-
ture. ScanNet (Spatio-Chemical Arrangement of Neighbors Network) is an end-to-end, interpretable geo-
metric deep learning model that learns spatio-chemical patterns directly from 3D structures. ScanNet
consistently outperforms Machine Learning models based on handcrafted features and comparative mod-
eling approaches. The web server is linked to both the PDB and AlphaFoldDB, and supports user-
provided structure files. Predictions can be readily visualized on the website via the Molstar web app
and locally via ChimeraX. ScanNet is available at http://bioinfo3d.cs.tau.ac.il/ScanNet/.

� 2022 Elsevier Ltd. All rights reserved.
Background

Recent progress in experimental1 and ML-based
methods of protein structure determination2–7 has
led to a spectacular rise in the number of available
protein structures. The recently released AlphaFold
database8 contains about 600 K models of protein
structures as of January 2022, and is expected to
grow to millions of entries. However, the over-
whelming majority of these proteins lack any exper-
imental functional annotation, raising the question
of how to best leverage this wealth of structural data
to yield biological insights. Identifying the functional
sites of a protein, such as its catalytic sites, various
binding sites or sites of post-translational modifica-
tion is a first step towards elucidation of its mecha-
nism of action in vivo and can guide rational design
of inhibitors.
The most common approach for structure-based

functional site annotation is comparative
td. All rights reserved.
modelling9–14,–17: given a query structure, proteins
with known annotations and similar folds and/or
local structural motifs are identified, and their func-
tional sites mapped onto the query. Comparative
modelling has however limited applicability in the
era of structural bioinformatics: first, it does not
scale well to large databases since it involves pair-
wise comparisons. Second, its coverage is limited
to proteins sharing similar fold or structural motifs
with experimentally annotated proteins. In contrast,
large-scale structure predictions have already led to
the discovery of hundreds to thousands of novel
protein folds.7 Last, by construction, comparative
modelling has limited sequence sensitivity and
therefore cannot be used to monitor the evolution
of functional sites within gene families (e.g., anti-
genic drift in viral proteins).
ML-based models are an appealing alternative to

comparative modeling, owing to their speed,
sequence sensitivity and ability to generalize to
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unseen protein families. Early works were based on
handcrafted features pipelines: for each amino acid
of a given protein, various features of geometrical,
physicochemical and evolutionary nature are first
extracted and then combined into functional site
predictions via a Machine Learning model for
tabular data (e.g., decision trees).18–21,16,17,22 How-
ever, ML-based models have been historically lim-
ited by the expressivity of the features employed.
Indeed, mathematically defined features such as
solvent accessibility, molecular surface curvature
or hydrophobicity scale cannot capture function-
bearing motifs defined by specific arrangements of
atoms of amino acids, such as Zinc fingers, or cat-
alytic triads of serine proteases. Recently, several
works have explored with varying degrees of suc-
cess end-to-end learning architectures for protein
structures as a mean to directly learn the relevant
structural features from raw data.23–26,24,27–32

We recently introduced ScanNet (Spatio-
Chemical Arrangement of Neighbors Neural
Network), a geometric deep learning model for
structure-based prediction of binding sites.32 Given
the raw structure file and, optionally, a position-
weightmatrix,ScanNet iteratively builds representa-
tions of atoms and amino acids based on the spatio-
chemical arrangement of their neighbors, and
exploits them to predict amino acid-wise binding site
probabilities. ScanNet consistently outperformed
(accuracy-wise and speed-wise) other approaches
based on comparative modelling and handcrafted
features for prediction of protein–protein binding
sites, B-cell epitopes (protein-antibody binding
sites).32 We report here similar findings for protein -
disordered protein binding sites. Importantly, Scan-
Net generalized well to unseen protein folds, unlike
comparative modelling. We further analyzed the
learned, pharmacophore-like spatio-chemical pat-
ternsand corresponding representations that under-
pin the network predictions. The learned atomic
patterns included classical structural motifs, such
as backbone-backbone or side chain-backbone
hydrogen bonds, or bundled helical fragments. Con-
versely, some patterns featured a prescribed
absence of atoms at certain locations, allowing the
identification of e.g. solvent-exposed side chain
atoms or backbone nitrogens/oxygens available for
hydrogenbonding.At theaminoacid scale,ScanNet
learned complex patterns spanning over variable
number of residues, and including ”O-ring” architec-
tures or transmembrane helical patterns. Impor-
tantly, the learned representations encompassed
numerous known functionally-relevant features of
structures,of geometrical (e.g., solvent accessibility,
convexity of themolecular surface, secondary struc-
ture), physico-chemical (e.g., electrostatic poten-
tial), or evolutionary (e.g., conservation) nature.
Taken together, the performance benchmark and
pattern analysis suggest that ScanNet successfully
learned some of the physico-chemical principles of
protein–protein interactions.
2

Here, we report a web server for running ScanNet
without local installation. The web server supports
prediction of protein–protein, protein-antibody and
protein-disordered protein binding sites, for both
single-chain and multi-chain assemblies. We first
briefly describe the architecture of ScanNet, its
use cases and its expected performance. We next
describe and illustrate the main options for running
the web server.
The ScanNet Model

Overview of the model architecture

We first briefly sketch the architecture of the
model, additional details being available from the
article describing the method.32 The architecture
of ScanNet is depicted in Figure 1 (reproduced
from.32) ScanNet takes as input the raw structure
file of the protein, and, optionally, a position-
weight matrix derived from a multiple sequence
alignment of evolutionary-related sequences. Scan-
Net first extracts a neighborhood around each
heavy atom (fixed number of K = 16 neighbors, cor-
responding to a ball of about 4�A radius), and calcu-
lates their coordinates in a local frame centered
around the atom and oriented using its covalent
bonds. The neighborhood (upper left panel), for-
mally a point cloud with attributes (atom group type)
is then passed through a set of trainable spatio-
chemical filters. Each filter computes a matching
score between the neighborhood and a trainable
spatio-chemical pattern (upper middle panel). For
instance, the pattern of filter 1 is defined by pres-
ence of a NH group in the center and an oxygen a
few angstroms away in the opposite direction from
the two covalent bonds; it corresponds to a hydro-
gen bond. The pattern of filter 2 is defined by a side
chain carbon in the center, in the vicinity of an aro-
matic ring and a nitrogen group; importantly, it also
features a prescribed absence of atoms in the oppo-
site direction from the covalent bonds (gray ellip-
soid). Prescribed absence of atoms implies
reactivity, and hence is critical for binding site pre-
diction. The resulting atom-wise embeddings (up-
per right panel) are next pooled at the amino acid
level, additional residue-wise information is con-
catenated (position weight matrix or one-hot
encoded sequence) and the process is repeated
at the amino acid level (lower panels). Finally, the
resulting amino acid-wise embeddings (lower right)
are converted to propensity scores via a neighbor-
hood attention module (not shown), which projects
the embeddings to scalar values and smoothes
them (in a learned fashion) across a neighborhood.
Supported classes of binding sites and
expected performance

Currently, ScanNet supports three classes of
binding sites: protein–protein binding sites



Figure 1. Overview of the ScanNet architecture.
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(PPBS), protein-disordered proteins binding sites
(PIDPBS) and B-cell epitopes (BCE). PPBS are
defined as the residues directly involved in one or
more native, high affinity protein–protein
interaction (4�A or less between at least one of its
atoms and the partner). PIDPBS are similarly
defined, but the binding region of the partner is
prescribed to be disordered. B-cell epitopes (BCE)
are defined as residues directly involved in an
antibody-antigen complex. Although a priori any
surface residue can be targeted by an
appropriately matured antibody, some regions
elicit stronger humoral response than others, likely
because they are easier to bind to with high
affinity and specificity. For instance, the anti-spike
protein antibodies extracted from sera of patients
vaccinated against or recovered from SARS-CoV-
2 mainly target the receptor binding domain; and
within the receptor binding domain, most
antibodies target one of the five main epitope
regions.33 Interactions with both globular and disor-
dered proteins are typically mediated by hydropho-
bic interactions and involve conserved residues,
whereas interactions with antibodies are more
heavily based on electrostatic interactions. We
used the same network architecture for the three
classes; ScanNet was initially trained for PPBS pre-
diction on a large and diverse set of 20 K represen-
tative protein chains (95% sequence identity
clusters), then fine-tuned for PIDPBS and BCE on
respectively 4600 and 800 representative chains.
The PPBS and BCE datasets were previously
described32; for the PIDPBS, we gathered from
the PDB all complexes involving one globular and
one disordered protein. The later is identified either
by its presence in the Disprot database34 (ensuring
3

at least 50% overlap between the crystallized frag-
ment and the annotated disordered regions) or by
its length (between 10 and 30, excluding small pep-
tides which may bind tiny binding sites and long,
potentially globular proteins). The pdb identifiers,
sample weights, data partitioning and label files for
all three datasets are available from https://
github.com/jertubiana/ScanNet/tree/main/datasets.
For PPBS prediction, ScanNet reached an

average test set accuracy of 87.7% corresponding
to 73.5% precision at 50% recall. The model
performed equally across phylas, sequence
lengths, interaction types (homomer, heteromer or
both) and protein types. Performance was
however dependent on the degree of homology
between the test example and the train set. More
specifically, we stratified the test set into four
subsets of similar such with decreasing homology
to the train set: the first set consisted of examples
having at least one homolog with 70–95%
sequence identity in the train set, whereas
examples in the last test did not have any protein
with similar fold topology in the train set (T level of
CATH classification). Performance decreased with
the degree of homology (from 78% to 63%
precision at 50% recall) – indicating that the
network recognizes previously encountered
protein folds - but much less rapidly than a
structural homology baseline method (from 90% to
33% precision at 50% recall) - confirming that it
learned general physio-chemical principles
underlying protein binding. For PIDPBS prediction,
training and performance was evaluated in 5-fold
cross-validation setup, where the five sets were
such that proteins belonging to the same protein
family (H level of CATH classification) were

https://github.com/jertubiana/ScanNet/tree/main/datasets
https://github.com/jertubiana/ScanNet/tree/main/datasets
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assigned to the same set. In this setting, ScanNet
achieved cross-validated accuracy of 91.6%,
corresponding to 24.8% precision at 50% recall.
The relatively lower precision was due to
confusion with regular PPBS, in particular the
ones found in homomultimer interfaces. We
however found that in a test setting, such errors
can be easily avoided by providing the native
homomultimer complex as input and performing
multi-chain prediction rather than providing a
single chain (see next section). For BCE
prediction, a similar cross-validation setup was
used, where partitioning was done using a 70%
sequence identity cut-off since epitopes are
weakly conserved throughout evolution. The
network achieved a cross-validated positive
predicted value at L/10 of 27.5% (i.e., the fraction
of correct epitopes in the top-10% highest scoring
residues). This number is likely an
underestimation of the true one as for most
antigens, not all the epitopes are known. For the
well-studied receptor binding domain of the SARS-
Figure 2. Selected examples of ScanNet binding site
represented in molecular surface representation using Chime
(blue) to high (red). Predictions were generated using the
Identifiers: D; Binding site type: Protein–protein; default value
Binding site type: Protein-disordered proteins; default value e
Binding site type: Protein-antibody; Multiple Sequence Align

4

CoV-2 spike protein, we found a Spearman
correlation of 0.75 between the predicted BCE
probability and the empirical antibody hit rate as
computed from available PDB structures.32

Selected examples of predictions for the three
classes of binding sites are shown in Figure 2.
The ScanNet Web Server

Inputs description

Input structure The model takes as input a
structure for a protein or a multimeric assembly.
Three formats are supported; if applicable, the first
two formats are recommended, as the results will
be sent directly if the same query was already
submitted previously.

� A PDB ID (e.g., 2okj). The experimental structure file
is fetched from the Protein Data Bank. The user can
specify whether to use the asymmetric unit file or the
first biological assembly file in the advanced options
predictions overlaid on the structures Proteins are
raX,35 with colors indicating binding propensity, from low
web server as follows: (a) Input structure: 1brs; Chain
elsewhere. (b) Input structure: 4jor; Chain Identifiers: A;
lsewhere. (c) Input structure: 1rvx; Chain Identifiers: All;
ment: no; default value elsewhere.
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panel (see https://pdb101.rcsb.org/learn/guide-to-
understanding-pdb-data/biological-assemblies for a
tutorial on the difference between both). By default,
the biological assembly file is used, if it exists.

� A Uniprot ID (e.g., P38398). The corresponding
AlphaFold model is fetched from the AlphaFold Data-
base, if it exists. Although we have not thoroughly
benchmarked the performance of ScanNet on Alpha-
Fold models, we did not find qualitative changes in
predictions for high confidence regions. For regions
that are predicted to be disordered and/or with low
confidence, the network predictions are not expected
to be well calibrated. Indeed, in the crystal structures
used for training, unfolded linear regions appear
mostly only if they are in complex with a partner;
otherwise, their disorder level is too high and they
are typically missing from the file. Therefore, disor-
dered regions systematically have higher binding
propensity than ordered ones. Notwithstanding this
bias, ScanNet predictions still exhibit a potentially sig-
nificant variability within disordered regions. The later
variability mainly arises from the chemical properties
of individual amino acids and the detection of linear
patterns in the sequence (see 32).

� A local file. Input file must be in either PDB or mmCIF
file format; the correct extension must be appended
to the file name (.pdb or.cif). The current implementa-
tion was tested for assemblies with up to about 3000
residues.

Of note, the current implementation discards all
solvent molecules and non-protein cofactors. If
provided, the coordinates of the hydrogen atoms
are ignored. Post-translational modifications are
ignored and exotic residues are treated as regular
ones.
Chain identifiers For multi-chain structure files,

all the chains in the file are processed by default.
To specify the chain(s) of interest, two formats are
supported:

� A specific chain or semicolon separated list of chains
(e.g., A or A;B;C). If the file has multiple models, the
first model is used.

� A pair model:chain or semicolon separated list of
model:chain pairs (e.g. 2:A or 0:A;1:A;2:B). Models
are indexed starting from 0.

Binding site type Three types of binding sites
are currently supported, see description above.
Email address ScanNet results are sent via

email once the run is completed. We recommend
checking the spam folder if the results are not
send after a few minutes.
Job ID An optional job name.
Multi-chain or Single-chain prediction This

option is only relevant if binding sites are
predicted for several chains at once, and specifies
whether the binding sites should be computed for
the chains taken together as a single biological
assembly (default) or independently from one
5

another. In the first case, the atomic and amino
acid neighborhoods include all the atoms/residues
present in the file (or the selection of chains)
whereas in the second case, the neighborhood of
a given atom (resp. residue) is only constituted by
atoms (resp. residues) belonging to the same
chain. The first option is preferred if the protein of
interest is assembled with other proteins in its
native state. Residues that are exposed for
isolated chains but buried within a biological
assembly will not be predicted as binding sites.
Example of use case include prediction of the B-
cell conformational epitopes of the SARS-CoV-2
spike protein trimer, and of the disordered binding
sites of Human calcineurin (which contains two
sub-units). The second option should be preferred
if i) multiple conformations of the same protein are
provided in a single file (e.g. NMR ensembles) ii)
the complex depicted in the structure file is
crystal-induced, and not representative of the
native biological state, iii) one wants to investigate
a posteriori the interfaces of a protein–protein
complex structure or model or iv) the complex is
very large. Figure 3 illustrates the difference
between multi-chain and single-chain predictions
on two examples.
Use Multiple Sequence Alignment or not

Whether to use evolutionary information to
perform prediction or not (default is yes). If yes, a
search for homologous sequences over UniRef is
performed using HH-blits,36 a Multiple Sequence
Alignment (MSA) is constructed and a Position
Weight Matrix (PWM) is derived and provided to
the network. Usage of evolutionary information sub-
stantially improves performance for protein–protein
and protein-disordered protein binding sites as they
are often more conserved than other surface resi-
dues. Conversely, evolutionary information does
not significantly improve performance for prediction
of B-cell epitopes. MSA should not be used if fast
results are favored (as this is the current computa-
tional bottleneck) or if the input protein is designed
and not natural (as evolution does not reflect func-
tionality anymore).

Outputs description and runtime

After computation, the user is redirected to a user-
friendly web page featuring an interactive 3D
visualization of the query structure colored by
protein binding propensity. The protein structure is
rendered using Molstar.37 In addition, a zip archive
containing the result files is sent over via email. Four
files are created:

� The pdb file with binding site probabilities provided in
the B-factor field.

� A csv file containing the binding site probabilities in
comma-separated value (csv) format.

� A cxc script for visualizing the results with
ChimeraX.35

https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/biological-assemblies
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/biological-assemblies


Figure 3. Difference between single-chain and multi-chain prediction Structures are depicted in cartoon
representation, with colors indicating binding propensity. In single-chain mode (left panels), the chains of the structure
file are processed independently from one another; the binding sites involved in internal interfaces, e.g. between
different components of the hemoglobin tetramer are identified. In multi-chain mode (right panels), the selected chains
are processed jointly; the internal binding sites are buried and hence not identified, whereas the other sites stand out.
The panels were generated using the following parameters. Top: Input structure: 1a3n; Chain IDs: all; Binding site
type: protein–protein; single-chain (left panel) and multi-chain (right panel) prediction. Bottom: Input structure: 1axc;
Chain IDs: “A;C;E”; Binding site type: protein-disordered protein; single-chain (left panel) and multi-chain (right panel)
prediction.

Jérôme Tubiana, D. Schneidman-Duhovny and H.J. Wolfson Journal of Molecular Biology 434 (2022) 167758
� A python script for visualizing the results with Chi-
mera, the predecessor of ChimeraX.

Each ScanNet run typically takes a few minutes
depending on the size and nature of the query.
The runtime is dominated, in order, by i) the
construction of the multiple sequence alignment ii)
loading and compilation of the network iii) the
downloading and parsing of the structure file and
iv) actual inference itself.
6

Concluding Remarks

A technical breakthrough was recently achieved
in computational protein structure prediction.
Turning this unprecedented wealth of structural
data into meaningful biological discoveries
requires the development of appropriate tools for
function prediction from structure. ScanNet
represents one small step towards this direction,
and we hereby make it easily accessible to the
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scientific community. Future prospects include
extension to different types of binding sites (RNA,
DNA, small molecules), partner-specific
predictions and protein-level functional
annotations. Historically, structure-based methods
have consistently outperformed sequence-based
methods, as knowledge of the geometry of the
protein facilitates annotation; for instance catalytic
sites are usually easily identified as concave
regions of the molecular surface.16 However, the
emergence of increasingly complex sequencemod-
els trained via self-supervised learning and that
implicitly encode structure could disrupt this hierar-
chy.38–45,45,45,46 We nonetheless anticipate that rel-
atively simple structure-based models should prove
more interpretable and explainable. Beyond accu-
racy, future efforts should also be directed towards
providing comprehensible explanations of the
predictions.
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