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Abstract Patterns of endogenous activity in the brain reflect a stochastic exploration of the 
neuronal state space that is constrained by the underlying assembly organization of neurons. Yet, 
it remains to be shown that this interplay between neurons and their assembly dynamics indeed 
suffices to generate whole- brain data statistics. Here, we recorded the activity from ∼40,000 
neurons simultaneously in zebrafish larvae, and show that a data- driven generative model of 
neuron- assembly interactions can accurately reproduce the mean activity and pairwise correla-
tion statistics of their spontaneous activity. This model, the compositional Restricted Boltzmann 
Machine (cRBM), unveils ∼200 neural assemblies, which compose neurophysiological circuits and 
whose various combinations form successive brain states. We then performed in silico perturba-
tion experiments to determine the interregional functional connectivity, which is conserved across 
individual animals and correlates well with structural connectivity. Our results showcase how 
cRBMs can capture the coarse- grained organization of the zebrafish brain. Notably, this genera-
tive model can readily be deployed to parse neural data obtained by other large- scale recording 
techniques.

Editor's evaluation
Large scale recordings, sometimes involving 10s of thousands of neurons, are becoming increas-
ingly common. Making sense of these recordings, however, is not easy. This paper introduces a new 
method, the compositional Restricted Boltzmann Machine, that overcomes this problem -- it can 
find structure in data, including both "cell assemblies" and structural connectivity, without inordinate 
computing resources (data from 40,000 neurons recorded from zebrafish can be analyzed in less 
than a day). This is a valuable contribution, both to those interested in data analysis, and to those 
interested in zebrafish.
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Introduction
The brain is a highly connected network, organized across multiple scales, from local circuits involving 
just a few neurons to extended networks spanning multiple brain regions (White et al., 1986; Song 
et  al., 2005; Kunst et  al., 2019). Concurrent with this spatial organization, brain activity exhibits 
correlated firing among large groups of neurons, often referred to as neural assemblies (Harris, 
2005). This assembly organization of brain dynamics has been observed in, for example, auditory 
cortex (Bathellier et  al., 2012), motor cortex (Narayanan et  al., 2005), prefrontal cortex (Tavoni 
et al., 2017), hippocampus (Lin et al., 2005), retina (Shlens et al., 2009), and zebrafish optic tectum 
(Romano et al., 2015; Mölter et al., 2018; Diana et al., 2019; Triplett et al., 2020). These neural 
assemblies are thought to form elementary computational units and subserve essential cognitive 
functions such as short- term memory, sensorimotor computation or decision- making (Hebb, 1949; 
Gerstein et al., 1989; Harris, 2005; Buzsáki, 2010; Harris, 2012; Palm et al., 2014; Eichenbaum, 
2018). Despite the prevalence of these assemblies across the nervous system and their role in neural 
computation, it remains an open challenge to extract the assembly organization of a full brain and to 
show that the assembly activity state, derived from that of the neurons, is sufficient to account for the 
collective neural dynamics.

The need to address this challenge is catalyzed by technological advances in light- sheet micros-
copy, enabling the simultaneous recording of the majority of neurons in the zebrafish brain at 
single- cell resolution in vivo (Panier et al., 2013; Ahrens et al., 2013; Wolf et al., 2015; Wolf 
et al., 2017; Migault et al., 2018; Vanwalleghem et al., 2018). This neural recording technique 
opens up new avenues for constructing near- complete models of neural activity, and in particular 
its assembly organization. Recent attempts have been made to identify assemblies using either 
clustering (Panier et al., 2013; Triplett et al., 2018; Chen et al., 2018; Mölter et al., 2018; Barto-
szek et al., 2021), dimensionality reduction approaches (Lopes- dos- Santos et al., 2013; Romano 
et al., 2015; Mu et al., 2019) or latent variable models (Diana et al., 2019; Triplett et al., 2020), 
albeit often limited to single brain regions. However, these methods do not explicitly assess to 
what extent the inferred assemblies could give rise to the observed neural data statistics, which is 
a crucial property of physiologically meaningful assemblies (Harris, 2005). Here, we address this 
challenge by developing a generative model of neural activity that is explicitly constrained by the 
assembly organization, thereby quantifying if assemblies indeed suffice to produce the observed 
neural data statistics.

Specifically, we formalize neural assemblies using a bipartite network of two connected layers repre-
senting the neuronal and the assembly activity, respectively. Together with the maximum entropy prin-
ciple (Jaynes, 1957; Bialek, 2012), this architecture defines the Restrictive Boltzmann Machine (RBM) 
model (Hinton and Salakhutdinov, 2006). Here, we use an extension to the classical RBM definition 
termed compositional RBM (cRBM) that we have recently introduced (Tubiana and Monasson, 2017; 
Tubiana et al., 2019a) and which brings multiple advances to assembly- based network modeling: 
(1) The maximum entropy principle ensures that neural assemblies are inferred solely from the data 
statistics. (2) The generative nature of the model, through alternate data sampling of the neuronal and 
assembly layers, can be leveraged to evaluate its capacity to replicate the empirical data statistics, 
such as the pairwise co- activation probabilities of all neuron pairs. (3) The cRBM steers the assembly 
organization to the so- called compositional phase where a small number of assemblies are active at 
any point in time, making the resulting model highly interpretable as we have shown previously for 
protein sequence analysis (Tubiana et al., 2019b).

Here, we have successfully trained cRBMs to brain- scale, neuron- level recordings of spontaneous 
activity in larval zebrafish containing 41,000 neurons on average (Panier et al., 2013; Wolf et al., 
2017; Migault et al., 2018). This represents an increase of ∼2 orders of magnitude in number of 
neurons with respect to previously reported RBM implementations (Köster et al., 2014; Gardella 
et al et al., 2017; Volpi et al., 2020), attained through significant algorithmic and computational 
enhancements. We found that all cells could be grouped into 100–200 partially overlapping assem-
blies, which are anatomically localized and together span the entire brain, and accurately replicate 
the first and second order statistics of the neural activity. These assemblies were found to carry more 
predictive power than a fully connected model which has orders of magnitude more parameters, 
validating that assemblies underpin collective neural dynamics. Further, the probabilistic nature of 
our model allowed us to compute a functional connectivity matrix by quantifying the effect of activity 
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perturbations in silico. This assembly- based functional connectivity is well- conserved across individual 
fish and consistent with anatomical connectivity at the mesoscale (Kunst et al., 2019).

In summary, we present an assembly decomposition spanning the zebrafish brain, which accurately 
accounts for its activity statistics. Our cRBM model provides a widely applicable tool to the community 
to construct low- dimensional data representations that are defined by the statistics of the data, in 
particular for very high- dimensional systems. Its generative capability further allows to produce new 
(synthetic) activity patterns that are amenable to direct in silico perturbation and ablation studies.

Results
Compositional RBMs construct Hidden Units by grouping neurons into 
assemblies
Spontaneous neural activity was recorded from eight zebrafish larvae aged 5–7 days post fertilization 
expressing the GCaMP6s or GCaMP6f calcium reporters using light- sheet microscopy (Panier et al., 
2013; Wolf et al., 2017; Migault et al., 2018). Each data set contained the activity of a large fraction 
of the neurons in the brain ( 40709 ± 13854 ; mean ± standard deviation), which, after cell segmenta-
tion, were registered onto the ZBrain atlas (Randlett et al., 2015) and mapzebrain atlas (Kunst et al., 
2019). Individual neuronal fluorescence traces were deconvolved to binarized spike trains using blind 
sparse deconvolution (Tubiana et al., 2020). This data acquisition process is depicted in Figure 1A.

We trained compositional Restricted Boltzmann Machine (cRBM) models to capture the activity 
statistics of these neural recordings. cRBMs are maximum entropy models, that is, the maximally 
unconstrained solution that fits model- specific data statistics (Hinton and Salakhutdinov, 2006; 
Tubiana and Monasson, 2017; Gardella et al., 2019), and critically extend the classical RBM formu-
lation. Its architecture consists of a bipartite graph where the high- dimensional layer of neurons  v  
(named ‘visible units’ in RBM terminology) is connected to the low- dimensional layer of latent compo-
nents, termed Hidden Units (HUs)  h . Their interaction is characterized by a weight matrix  W  that is 
regularized to be sparse. The collection of neurons that have non- zero interactions with a particular 
HU, noted  hµ  (i.e. with  |wi,µ| > 0 ), define its corresponding neural assembly μ (Figure 1B). This weight 
matrix, together with the neuron weight vector  g  and HU potential  U  , defines the transformation 
from the binarized neural activity  v(t)  to the continuous HU activity  h(t)  (Figure 1B). Figure 1C shows 
all recorded neurons of a zebrafish brain, color- labeled according to their strongest- connecting HU, 
illustrating that cRBM- inferred assemblies (hereafter, neural assemblies for conciseness) are typically 
densely localized in space and together span the entire brain.

Beyond its architecture (Figure 2A), the model is defined by the probability function  P(v, h)  of any 
data configuration  (v, h)  (see Materials and methods ‘Restricted Boltzmann Machines’ and ‘Composi-
tional Restricted Boltzmann Machine’ for details):

 
P(v, h) = 1

Z
exp

(
−E(v, h)

)
  

(1)

where  Z   is the partition function that normalizes Equation 1 and  E  is the following energy function:

 
E(v, h) = −

∑
i

givi +
∑
µ

Uµ(hµ) −
∑
i,µ

wi,µvihµ
  

(2)

HU activity h is obtained by sampling from the conditional probability function  P(h|v) :

 
P(h|v) =

M∏
µ=1

P(hµ|v) ∝
M∏

µ=1
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(
−Uµ(hµ) + hµ ·
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(3)

Conversely, neural activity is obtained from HU activity through:

 

P(v|h) =
N∏

i=1
P(vi|h) ∝

N∏
i=1

exp


givi + vi ·

∑
µ

wi,µhµ




  
(4)

Equations 3 and 4 mathematically reflect the dual relationship between neural and assembly states: 
the Hidden Units  h  drive ‘visible’ neural activity  v , expressed as  P(v|h) , while the stochastic assembly 
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Figure 1. cRBMs construct Hidden Units by grouping neurons into assemblies. (A) The neural activity of zebrafish larvae was imaged using light- sheet 
microscopy (left), which resulted in brain- scale, single- cell resolution data sets (middle, microscopy image of a single plane shown for fish #1). Calcium 
activity  ∆F/F   was deconvolved to binarized spike traces for each segmented cell (right, example neuron). (B) cRBM sparsely connects neurons (left) to 
Hidden Units (HUs, right). The neurons that connect to a given HU (and thus belong to the associated assembly), are depicted by the corresponding 

Figure 1 continued on next page
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activity  h  itself is defined as a function of the activity of the neurons:  P(h|v) . Importantly, the model 
does not include direct connections between neurons, hence neural correlations  ⟨vivj⟩  can arise solely 
from shared assemblies. Moreover, this bipartite architecture ensures that the conditional distributions 
factorize, leading to a sampling procedure where all neurons or all HUs can be sampled in parallel. The 
cRBM leverages this property to efficiently generate new data by Monte Carlo sampling alternately 
from  P(h|v)  and  P(v|h)  (Figure 2B).

The cRBM differs from the classical RBM formulation (Hinton and Salakhutdinov, 2006) through 
the introduction of double Rectified Linear Unit (dReLU) potentials  Uµ , weight sparsity regularization 
and normalized HU activity (further detailed in Methods). We have previously demonstrated in theory 
and application (Tubiana and Monasson, 2017; Tubiana et al., 2019a; Tubiana et al., 2019b) that 
this new formulation steers the model into the so- called compositional phase, which makes the latent 
representation highly interpretable. This phase occurs when a limited number  m  of HUs co- activate 
such that  1 ≪ m ≪ M   where  M   is the total number of HUs. Thus, each visible configuration is mapped 
to a specific combination of activated HUs. This contrasts with the ferromagnetic phase ( m ∼ 1 ) where 
each HU encodes one specific activity pattern, thus severely limiting the possible number of encoded 
patterns, or the spin- glass phase ( m ∼ M  ) where all HUs activate simultaneously, yielding a very 
complex assembly patchwork (Tubiana and Monasson, 2017). Therefore, the compositional phase 
can provide the right level of granularity for a meaningful interpretation of the cRBM neural assem-
blies by decomposing the overall activity as a time- dependent co- activation of different assemblies of 
interpretable size and extent.

Trained cRBMs accurately replicate data statistics
cRBM models are trained to maximize the  P(v, h)  log- likelihood of the zebrafish data recordings, which 
is achieved by matching the model- generated statistics  ⟨vi⟩ ,  ⟨hµ⟩  and  ⟨vihµ⟩  (the mean neuronal activity, 
mean HU activity and their correlations, respectively) to the empirical data statistics (Equation 14). In 
order to optimize the two free parameters of the cRBM model – the sparsity regularization parameter 
 λ  and the total number of HUs  M   – we assessed the cRBM performance for a grid of  (λ, M) - values for 
one data set (fish #3). This analysis yielded an optimum for  λ = 0.02  and  M = 200  (Figure 2—figure 
supplement 1). These values were subsequently used for all recordings, where  M   was scaled with the 
number of neurons  N  .

We trained cRBMs on 70% of the recording length, and compared the statistics of model- generated 
data to the withheld test data set (the remaining 30% of recording, see Materials and methods ‘Train 
/ test data split’ and ‘Assessment of data statistics’ for details). After convergence, the cRBM gener-
ated data that replicated the training statistics accurately, with normalized Root Mean Square Error 
(nRMSE) values of  nRMSE⟨vi⟩ = 0.11 ,  nRMSE⟨hµ⟩ = 0.15  and  nRMSE⟨vihµ⟩ = 0.09  (Figure 2C- E). Here, 
nRMSE is normalized such that 1 corresponds to shuffled data statistics and 0 corresponds to the best 
possible RMSE, i.e., between train and test data.

We further evaluated cRBM performance to assess its ability to capture data statistics that the 
cRBM was not explicitly trained to replicate: the pairwise correlations between neurons  ⟨vivj⟩  and the 
pairwise correlations between HUs  ⟨hµhν⟩ . We found that these statistics were also accurately repli-
cated by model- generated data, with  nRMSE⟨vivj⟩ = −0.09  (meaning that the model slightly outper-
formed the train- test data difference) and  nRMSE⟨hµhν⟩ = 0.17  (Figure 2F, G). The fact that cRBM 
also accurately replicated neural correlations  ⟨vivj⟩  (Figure 2F) is of particular relevance, since this 
indicates that (1) the assumption that neural correlations can be explained by their shared assemblies 
is justified and (2) cRBMs may provide an efficient mean to model neural interactions of such large 
systems ( N ∼ 104 ) where directly modeling all  N2  interactions would be computationally infeasible or 
not sufficiently constrained by the available data.

color labeling (right panel). Data sets typically consist of  N ∼ 104  neurons and  M ∼ 102  HUs. The activity of 500 randomly chosen example neurons 
(raster plot, left) and HUs 99, 26, 115 (activity traces, right) of the same time excerpt is shown. HU activity is continuous and is determined by 
transforming the neural activity of its assembly. (C) The neural assemblies of an example data set (fish #3) are shown by coloring each neuron according 
to its strongest- connecting HU. 7 assemblies are highlighted (starting rostrally at the green forebrain assembly, going clockwise: HU 177, 187, 7, 156, 
124, 64, 178), by showing their neurons with a connection  |w| ≥ 0.1 . See Figure 3 for more anatomical details of assemblies. R: Right, L: Left, Ro: Rostral, 
C: Caudal.

Figure 1 continued
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Figure 2. cRBM is optimized to accurately replicate data statistics. (A) Schematic of the cRBM architecture, with neurons  vi  on the left, HUs  hµ  on the 
right, connected by weights  wi,µ . (B) Schematic depicting how cRBMs generate new data. The HU activity  h(t)  is sampled from the visible unit (i.e. 
neuron) configuration  v(t) , after which the new visible unit configuration  v(t + 1)  is sampled and so forth. (C) cRBM- predicted and experimental mean 
neural activity  ⟨vi⟩  were highly correlated (Pearson correlation  rP = 0.91 ,  P < 10−307 ) and had low error ( nRMSE⟨vi⟩ = 0.11 , normalized Root Mean 
Square Error, see Materials and methods - ‘Calculating the normalized Root Mean Square Error’ ). Data displayed as 2D probability density function 
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Next, we assessed the reconstruction quality after neural data was compressed by the cRBM 
low- dimensional bottleneck. The reconstruction quality is defined as the log- likelihood of recon-
structed neural data  vrecon  (i.e.  v  that is first transformed to the low- dimensional  h , and then back 
again to the high- dimensional  vrecon , see Materials and methods - ‘Reconstruction quality’). This 
is important to prevent trivial, undesired solutions like  wi,µ = 0 ∀ i,µ  which would directly lead to 

 ⟨hµ⟩P(v,h) = ⟨hµ⟩data = 0  (potentially because of strong sparsity regularization). Figure 2H shows the 
distribution of cRBM reconstruction quality of all neurons (in purple), quantified by the normalized 
log- likelihood (nLLH) such that 0 corresponds to an independent model  (P(vi(t)) = ⟨vi⟩)  and 1 corre-
sponds to perfect reconstruction (non- normalized  LLH = 0 ). For comparison, we also reconstructed 
the neural activity using a fully connected Generalized Linear Model (GLM, see Materials and methods 
- ‘Generalized Linear Model’ and Figure 2, Figure 2—figure supplement 2H, blue). The cRBM nLLH 
distribution is significantly greater than the GLM nLLH distribution (one- sided Mann Whitney U test, 
 P < 10−42 ), with medians  LLHcRBM = 0.24  and  LLHGLM = 0.20 . Hence, projecting the neural data onto 
the low- dimensional representation of the HUs does not compromise the ability to explain the neural 
activity. In fact, reconstruction quality of the cRBM slightly outperforms the GLM, possibly due to the 
suppression of noise in the cRBM estimate. The optimal  (λ = 0.02, M = 200)  choice of free parameters 
was selected by cross- validating the median of the cRBM reconstruction quality, together with the 
normalized RMSE of the five previously described statistics (Figure 2—figure supplement 1).

Lastly, we confirmed that the cRBM indeed resides in the compositional phase, characterized by 

 1 ≪ m(t) ≪ M   where  m(t)  is the number of HUs active at time point  t  (Figure 2—figure supplement 
3A). This property is a consequence of the sparse weight matrix  W , indicated by its heavy- tail log- 
distribution (Figure  2I, purple). The compositional phase is the norm for the presently estimated 
cRBMs, evidenced by the distribution of median  m(t)  values for all recordings (average  

median(m)
M   is 

0.26, see Figure 2—figure supplement 3B). Importantly, the sparse weight matrix does not automat-
ically imply that only a small subset of neurons is connected to the cRBM hidden layer. We validated 
this by observing that more neurons strongly connect to the hidden layer than expected by shuffling 

(PDF), scaled logarithmically (base 10). (D) cRBM- predicted and experimental mean Hidden Unit (HU) activity   also correlated very strongly ( rP = 0.93 , 
 P < 10−86 ) and had low  nRMSE⟨hµ⟩ = 0.15  (other details as in C) (E) cRBM- predicted and experimental average pairwise neuron- HU interactions 

 ⟨vihµ⟩  correlated strongly ( rP = 0.74 ,  P < 10−307 ) and had a low error ( nRMSE⟨vihµ⟩ = 0.09 ). (F) cRBM- predicted and experimental average pairwise 
neuron- neuron interactions  ⟨vivj⟩  correlated well ( rP = 0.58 ,  P < 10−307 ) and had a low error ( nRMSE⟨vivj⟩ = −0.09 , where the negative nRMSE value 
means that cRBM- predictions match the test data slightly better than the train data). Pairwise interactions were corrected for naive correlations due 
to their mean activity by subtracting  ⟨vi⟩⟨vj⟩ . (G) cRBM- predicted and experimental average pairwise HU- HU interactions  ⟨hµhν⟩  correlated strongly 
( rP = 0.73 ,  P < 10−307 ) and had a low error ( nRMSE⟨hµhν⟩ = 0.17 ). (H) The low- dimensional cRBM bottleneck reconstructs most neurons above chance 
level (purple), quantified by the normalized log- likelihood (nLLH) between neural test data vi and the reconstruction after being transformed to HU 
activity (see Materials and methods - ‘Reconstruction quality’). Median normalized =  nLLHcRBM  0.24. Reconstruction quality was also determined for 
a fully connected Generalized Linear Model (GLM) that attempted to reconstruct the activity of a neuron vi using all other neurons  v−i  (see Materials 
and methods - ‘Generalized Linear Model’). The distribution of 5000 randomly chosen neurons is shown (blue), with median  nLLHGLM = 0.20 . The 
cRBM distribution is stochastically greater than the GLM distribution (one- sided Mann Whitney U test,  P < 10−42 ). (I) cRBM (purple) had a sparse 
weight distribution, but exhibited a greater proportion of large weights  wi,µ  than PCA (yellow), both for positive and negative weights, displayed in 
log- probability. (J) Distribution of above- threshold absolute weights  |wi,µ|  per neuron vi (dark purple), indicating that more neurons strongly connect to 
the cRBM hidden layer than expected by shuffling the weight matrix of the same cRBM (light purple). The threshold  Θ  was set such that the expected 
number of above- threshold weights per neuron  E(#wi > Θ) = 1 . (K) Corresponding distribution as in (J) for PCA (dark yellow) and its shuffled weight 
matrix (light yellow), indicating a predominance of small weights in PCA for most neurons vi. All panels of this figure show the data statistics of the cRBM 
with parameters  M = 200  and  λ = 0.02  (best choice after cross- validation, see Figure 2—figure supplement 1) of example fish #3, comparing the 
experimental test data test and model- generated data after cRBM training converged.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. cRBM free parameter optimization by cross- validation.

Figure supplement 2. Generalized Linear Model (GLM) parameter optimization.

Figure supplement 3. cRBMs are in the compositional phase after convergence.

Figure supplement 4. Neurons can be embedded in multiple assemblies.

Figure supplement 5. Influence of number of HUs  M   and sparsity regularization  λ  on cRBM properties.

Figure supplement 6. cRBM assemblies are sparse and spatially localized.

Figure supplement 7. Variational Autoencoder (VAE) models do not fit the second- order statistics of the neural data.

Figure 2 continued
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the weight matrix (Figure 2J). Further, we quan-
tified the number of assemblies that each neuron 
was embedded in, which showed that increasing 
the embedding threshold did not notably affect 
the fraction of neurons embedded in at least 1 
assembly (93–94%, see Figure 2—figure supple-
ment 4). To assess the influence of  M   and  λ  on the 
inferred assemblies, we computed, for all cRBM 
models trained during the optimization of  M   and 
 λ , the distribution of assembly sizes (Figure 2—
figure supplement 5A- F). We found that  M   and 
 λ  controlled the distribution of assembly sizes in a 
consistent manner: assembly size was a gradually 
decreasing function of both  M   and  λ  (two- way 
ANOVA, both  P < 10−3 ). Furthermore, for  M   and 
 λ  values close to the optimal parameter- setting 
( M = 200 ,  λ = 0.02 ), the changes in assembly size were very small and gradual. This showcases the 
robustness of the cRBM to slight changes in parameter choice.

Sparsity facilitated that each assembly only connects to a handful of anatomical regions, as we 
quantified by calculating the overlap between cRBM assemblies and anatomical regions (Figure 2—
figure supplement 6). We found that cRBM assemblies connect to a median of three regions (inter-
quartile range: 2–6 regions). Importantly, the cRBM has no information about the locations of neurons 
during training, so the localization to a limited set of anatomical areas that we observe is extracted 
from the neural co- activation properties alone. For comparison, Principal Component Analysis (PCA), 
a commonly used non- sparse dimensionality reduction method that shares the cRBM architecture, 
naturally converged to a non- sparse weight matrix (Figure 2I, yellow), with fewer connected neurons 
than expected by shuffling its weight matrix (Figure 2K). This led to unspecific assemblies that are 
difficult to interpret by anatomy (Figure 2—figure supplement 6). As a result, sparsity, a cRBM prop-
erty shared with some other dimensionality reduction techniques, is crucial to interpret the assemblies 
by anatomy as we demonstrate in the next section.

We next asked whether sparsity alone was sufficient for a generative model to accurately reca-
pitulate the neural recording statistics. To address this question, we trained sparse linear Variational 
Autoencoders (VAEs) using the same parameter- optimization protocol (Figure  2—figure supple-
ment 7A). Like cRBMs, linear VAEs are generative models that learn a latent representation of a 
dataset (Tubiana et  al., 2019a). We observed that VAEs were not able to replicate the second- 
order statistics, and therefore were not able to reconstruct neural activity from latent representa-
tion (Figure 2—figure supplement 7B- D), even though they also obtained sparse representations 
(Figure 2—figure supplement 7E, F). Other clustering or dimensionality reduction methods, such as 
k- means, PCA and non- negative matrix factorization, have been used previously to cluster neurons 
in the zebrafish brain (Chen et al., 2018; Mu et al., 2019; Marques et al., 2020). However, because 
these methods cannot generate artificial neural data using their inferred assemblies, their quality 
cannot be quantitatively assessed as we have done for the cRBM (but see Tubiana et al., 2019a for 
other comparisons).

cRBM assemblies compose functional circuits and anatomical structures
Above, we have shown that cRBMs converge to sparse weight matrix solutions. This property enables 
us to visualize the cRBM- inferred neural assemblies as the collection of significantly connected neurons 
to an HU. Neurons from a given neural assembly display concerted dynamics, and so one may expect 
their spatial organization to reflect the neuroanatomy and functional organization of the brain. We 
here highlight a selection of salient examples of neural assemblies, illustrating that assemblies match 
well with anatomical structures and functional circuits, while the complete set of neural assemblies is 
presented in Video 1. In particular, we identified assemblies that together compose a neural circuit, 
are neurotransmitter- specific, encompass a long- range pathway, or can be identified by anatomy. The 
examples shown here are from a single fish (#3), but results from other fish were comparable.

Video 1. All neural assemblies of one example fish 
All 200 inferred assemblies of the example fish #2 of 
Figure 3 are shown in sequence. Top: neural assembly. 
Bottom: HU activity of test data.

https://elifesciences.org/articles/83139/figures#video1

https://doi.org/10.7554/eLife.83139
https://elifesciences.org/articles/83139/figures#video1
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First, we identified six assemblies that together span the hindbrain circuit that drives eye and 
tail movements (Dunn et  al., 2016; Wolf et  al., 2017; Chen et  al., 2018). We find two neural 
assemblies in rhombomere 2 which align with the anterior rhombencephalic turning region (ARTR, 
Ahrens et al., 2013; Dunn et al., 2016; Wolf et al., 2017, Figure 3A, B). Each assembly primarily 
comprises neurons of either the left or right side of the ARTR, but also includes a small subset of 
contralateral neurons with weights of opposite sign in line with the established mutual inhibition 
between both subpopulations. Two other symmetric assemblies (Figure 3C, D) together encompass 
the oculomotor nucleus (nIII) and the contralateral abducens nucleus (nVI, in rhombomere 6), two 
regions engaged in ocular saccades (Ma et al., 2014) and under the control of the ARTR (Wolf 
et al., 2017). Additionally, we observed two symmetric assemblies (Figure 3E, F) in the posterior 
hindbrain (in rhombomere 7), in a region known to drive unilateral tail movements (Chen et al., 
2018; Marques et al., 2020) and whose antiphasic activation is also controlled by the ARTR activity 
(Dunn et al., 2016).

Next, we observed assemblies that correspond to particular neurotransmitter expressions in the 
ZBrain atlas (Randlett et al., 2015), such as the excitatory Vglut2 (Figure 3G) and inhibitory Gad1b 
(Figure 3H) neurotransmitters. These assemblies consist of multiple dense loci that sparsely populate 
the entire brain, confirming that cRBMs are able to capture a large morphological diversity of neural 
assemblies. Figure 3I depicts another sparse, brain- wide assembly that encompasses the pallium, 
habenula (Hb) and interpeduncular nucleus (IPN), and thus captures the Hb- IPN pathway that connects 
to other regions such as the pallium (Beretta et al., 2012; Bartoszek et al., 2021).

Larger nuclei or circuits were often composed of a small number of distinct neural assemblies 
with some overlap. For example, the cerebellum was decomposed into multiple, bilateral assem-
blies (Figure  3J) whereas neurons in the torus semicircularis were grouped per brain hemisphere 
(Figure 3K). As a last example, the optic tectum was composed of a larger set of approximately 
18 neural assemblies, which spatially tiled the volume of the optic tectum (Figure 3L). This partic-
ular organization is suggestive of spatially localized interactions within the optic tectum, and aligns 
with the morphology of previously inferred assemblies in this specific region (Romano et al., 2015; 
Diana et al., 2019; Triplett et al., 2020). However, Figure 3 altogether demonstrates that the typical 
assembly morphology of the optic tectum identified by our and these previous analyses does not 
readily generalize to other brain regions, where a large range of different assembly morphologies 
compose neural circuits.

Overall, the clear alignment of cRBM- based neural assemblies with anatomical regions and circuits 
suggests that cRBMs are able to identify anatomical structures from dynamical activity alone, which 
enables them to break down the overall activity into parts that are interpretable by physiologists in the 
context of previous, more local studies.

HU dynamics cluster into groups and display slower dynamics than 
neurons
HU activity, defined as the expected value of  P(h|v)  (Equation 9), exhibits a rich variety of dynamical 
patterns (Figure 4A). HUs can activate very transiently, slowly modulate their activity, or display periods 
of active and inactive states of comparable duration. Figure 4B highlights a few HU activity traces 
that illustrate this diversity of HU dynamics. The top three panels of Figure 4B show the dynamics of 
the assemblies of Figure 3A- F which encompass the ARTR hindbrain circuit that controls saccadic eye 
movements and directional tail flips. HUs 99 and 161 drive the left and right ARTR and display anti-
phasic activity with long dwell times of ∼15s, in accordance with previous studies (Ahrens et al., 2013; 
Dunn et al., 2016; Wolf et al., 2017). HU 102 and 163 correspond to the oculomotor neurons in the 
nuclei nIII and nVI that together drive the horizontal saccades. Their temporal dynamics are locked 
to that of the ARTR units in line with the previously identified role of ARTR as a pacemaker for the 
eye saccades (Wolf et al., 2017). HUs 95 and 135, which drive directional tail flips, display transient 
activations that only occur when the ipsilateral ARTR- associated HU is active. This is consistent with 
the previous finding that the ARTR alternating activation pattern sets the orientation of successive tail 
flips accordingly (Dunn et al., 2016). The fourth panel shows the traces of the brain- wide assemblies 
of Figure 3G, I, displaying slow tonic modulation of their activity. Finally, the bottom panel, which 
corresponds to the collective dynamics of assembly 122 (Figure 3H), comprises short transient activity 
that likely corresponds to fictive swimming events.

https://doi.org/10.7554/eLife.83139
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Figure 3. cRBM assemblies compose functional circuits and anatomical structures. (A–I) Individual example assemblies μ are shown by coloring each 
neuron  i  with its connectivity weight value  wi,µ  (see color bar at the right hand side). The assembly index μ is stated at the bottom of each panel. The 
orientation and scale are given in panel A (Ro: rostral, C: caudal, R: right, L: left, D: dorsal, V: ventral). Anatomical regions of interest, defined by the 
ZBrain Atlas (Randlett et al., 2015), are shown in each panel (Rh: rhombomere, nMLF: nucleus of the medial longitudinal fascicle; nIII: oculomotor 
nucleus nIII, Cl: cluster; Str: stripe, P. nV TG: Posterior cluster of nV trigeminal motorneurons; Pa: pallium; Hb: habenula; IPN: interpeduncular nucleus). 

Figure 3 continued on next page
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Some HUs regularly co- activate, leading to strong correlations between different HUs. This is quan-
tified by their Pearson correlation matrix shown in Figure 4C (top), which reveals clusters of correlated 
HUs. These were grouped using hierarchical clustering (Figure 4C, bottom), and we then manually 
identified their main anatomical location (top labels). These clusters of HUs with strongly correlated 
activity suggest that much of the HU variance could be captured using only a small number of vari-
ables. We quantified this by performing PCA on the HU dynamics, finding that indeed 52% of the vari-
ance was captured by the first three PCs, and 85% by the first 20 PCs (Figure 4D). We further observed 
that HU activity is bimodal, as evidenced by the distribution of all HU activity traces in Figure 4E. This 
bimodality can emerge because the dReLU potentials  Uµ  (Equation 13) can learn to take different 
shapes, including a double- well potential that leads to bimodal dynamics (see Materials and methods 
- ‘Choice of HU potential’). This allows us to effectively describe HU activity as a two- state system, 
where  hµ(t) > 0  increases the probability to spike ( P(vi(t) = 1) ) for its positively connected neurons, 
and  hµ(t) < 0  decreases their probability to spike. The binarized neuron activity is also a two- state 
system (spiking or not spiking), which enabled us to compare the time constants of neuron and HU 
state changes, quantified by the median time between successive onsets of activity. We find that HUs, 
which represent the concerted dynamics of neuronal assemblies, operate on a slower time scale than 
individual neurons (Figure 4F, Figure 2—figure supplement 5G- L). This observation aligns with the 
expected difference between cellular and circuit- level time scales.

cRBM embodies functional connectivity that is strongly correlated 
across individuals
The probabilistic nature of cRBMs uniquely enables in silico perturbation experiments to estimate 
the functional connection  Jij  between pairs of neurons, where  Jij  is quantified by directly perturbing 
the activity of neuron  j  and observing the change in probability to spike of neuron  i . We first defined 
the generic, symmetric functional connection  Jij  using  P(vi|vj, vk̸=i,j)  (Equation 15) and then used  P(v)  
(Equation 12) to derive the cRBM- specific  Jij  (Equation 17, see Materials and methods - ‘Effective 
connectivity matrix’). Using this definition of  Jij , we constructed a full neuron- to- neuron effective 
connectivity matrix for each zebrafish recording. We then asked whether this cRBM- inferred connec-
tivity matrix was robust across individuals. For this purpose, we calculated the functional connections 
between anatomical regions, given by the assemblies that occupy each region, because neuronal 
identities can vary across individual specimen. We aggregated neurons using the L1 norm for each 
pair of anatomical regions to determine the functional connection between regions (see Materials and 
methods - ‘From inter- neuron to inter- region connectivity’). For this purpose, we considered anatom-
ical regions as defined by the mapzebrain atlas (Kunst et al., 2019) for which a regional- scale struc-
tural connectivity matrix exists to which we will compare our functional connectivity matrix.

This led to a symmetrical functional connectivity matrix for each animal, three of which are shown in 
Figure 5A- C (where non- imaged regions are left blank, and all eight animals are shown in Figure 5—
figure supplement 1). The strength of functional connections is distributed approximately log- normal 
(Figure 5D), similar to the distribution of structural region- to- region connections (Kunst et al., 2019). 
To quantify the similarity between individual fish, we computed the Pearson correlation between each 
pair of fish. Functional connectivity matrices correlate strongly across individuals, with an average 
Pearson correlation of 0.69 (Figure 5E and F).

We conclude that similar functional circuits spontaneously activate across individuals, despite the 
limited duration of neural recordings (∼25 minutes), which can be identified across fish using inde-
pendently estimated cRBMs. In the next section, we aggregate these individual matrices to a general 
functional connectivity matrix for comparison with the zebrafish structural connectivity matrix.

cRBM-inferred functional connectivity reflects structural connectivity
In the previous section we have determined the functional connections between anatomical regions 
using the cRBM assembly organization. Although functional connectivity stems from the structural 

(J–L) Groups of example assemblies that lie in the same anatomical region are shown for cerebellum (Cb), torus semicircularis (TSC), and optic tectum 
(OT). Neurons i were defined to be in an assembly μ when  |wi,µ | > 0.15 , and colored accordingly. If neurons were in multiple assemblies shown, they were 
colored according to their strongest- connecting assembly.

Figure 3 continued

https://doi.org/10.7554/eLife.83139
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Figure 4. HU dynamics are bimodal and activate slower than neurons. (A) HU dynamics are diverse and are partially shared across HUs. The bimodality 
transition point of each HU was determined and subtracted individually, such that positive values correspond to HU activation (see Materials and 
methods - ‘Time constant calculation’6.12). The test data consisted of three blocks, with a discontinuity in time between the first and second block 
(Materials and methods). (B) Highlighted example traces from panel A. HU indices are denoted on the right of each trace, colored according to their 
cluster from panel D. The corresponding cellular assemblies of these HU are shown in Figure 3A- I. (C) Top: Pearson correlation matrix of the dynamic 
activity of panel A. Bottom: Hierarchical clustering of the Pearson correlation matrix. Clusters (as defined by the colors) were annotated manually. This 
sorting of HUs is maintained throughout the manuscript. OT: Optic Tectum, Di: Diencephalon, ARTR: ARTR- related, Misc.: Miscellaneous, L: Left, R: 
Right. (D) A Principal Component Analysis (PCA) of the HU dynamics of panel A shows that much of the HU dynamics variance can be captured with a 
few PCs. The first 3 PCs captured 52%, the first 10 PCs captured 73% and the first 25 PCs captured 85% of the explained variance. (E) The distribution of 
all HU activity values of panel A shows that HU activity is bimodal and sparsely activated (because the positive peak is smaller than the negative peak). 
PDF: Probability Density Function. (F) Distribution of the time constants of HUs (black) and neurons (grey). Time constants are defined as the median 
oscillation period, for both HUs and neurons. An HU oscillation is defined as a consecutive negative and positive activity interval. A neuron oscillation 
is defined as a consecutive interspike- interval and spike- interval (which can last for multiple time steps, for example see Figure 1A). The time constant 
distribution of HUs is greater than the neuron distribution (Mann Whitney U test,  P < 10−16 ).

https://doi.org/10.7554/eLife.83139
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(i.e. biophysical) connections between neurons, it can reflect correlations that arise through indirect 
network interactions (Bassett and Sporns, 2017; Das and Fiete, 2020). Using recently published 
structural connectivity data of the zebrafish brain (Kunst et al., 2019), we are now able to quantify 
the overlap between a structurally defined connectivity matrix and our functional connectivity matrix 
estimated through neural dynamics. Kunst et al., 2019 determined a zebrafish structural connectivity 
matrix between 72 anatomical regions using structural imaging data from thousands of individually 
Green Fluorescent Protein (GFP)- labeled neurons from multiple animals. We slightly extended this 
matrix by using the most recent data, filtering indirect connections and accounting for the resulting 
sampling bias (Figure 6A, regions that were not imaged in our light- sheet microscopy experiments 

Figure 5. cRBM gives rise to functional connectivity that is strongly correlated across individuals. (A) The functional connectivity matrix between 
anatomical regions of the mapzebrain atlas (Kunst et al., 2019) of example fish #2 is shown. Functional connections between two anatomical regions 
were determined by the similarity of the HUs to which neurons from both regions connect to (Materials and methods). Mapzebrain atlas regions with 
less than five imaged neurons were excluded, yielding  NMAP = 50  regions in total. See Supplementary file 1 for region name abbreviations. The 
matrix is shown in log10 scale, because functional connections are distributed approximately log- normal (see panel D). (B) Equivalent figure for example 
fish #3 (example fish of prior figures). (C) Equivalent figure for example fish #4. Panels A- C share the same log10 color scale (right). (D) Functional 
connections are distributed approximately log- normal. (Mutual information with a log- normal fit (black dashed line) is 3.83, while the mutual information 
with a normal fit is 0.13). All connections of all eight fish are shown, in log10 scale (purple). (E) Functional connections of different fish correlate well, 
exemplified by the three example fish of panels A- C. All non- zero functional connections (x- axis and y- axis) are shown, in log10 scale. Pearson correlation 

 rP  between pairs:  rP(#2, #3) = 0.73 ,  rP(#2, #4) = 0.73 ,  rP(#3, #4) = 0.78 . All correlation p values  < 10−20  (two- sided t- test). (F) Pearson correlations  rP  
of region- to- region functional connections between all pairs of 8 fish. For each pair, regions with less than five neurons in either fish were excluded. All p 
values  < 10−20  (two- sided t- test), and average correlation value is 0.69.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Functional connectivity matrices of all fish.

https://doi.org/10.7554/eLife.83139
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Figure 6. cRBM- inferred functional connectivity reflects structural connectivity. (A) Structural connectivity matrix is shown in log10 scale, updated from 
Figure 8C of Kunst et al., 2019. Regions that were not imaged in our experiments were excluded (such that  NMAP = 50  out of 72 regions remain). 
Regions (x- axis and y- axis) were sorted according to Kunst et al., 2019. Compared to Figure 8C of Kunst et al., 2019 additional structural data was 
added and the normalization procedure was updated to include within- region connectivity (see Materials and methods - ‘Extensions of the structural 
connectivity matrix’). See Supplementary file 1 for region name abbreviations. (B) Average functional connectivity matrix is shown in log10 scale, as 
determined by averaging the cRBM functional connectivity matrices of all 8 fish (see Materials and methods - ‘Specimen averaging of connectivity 
matrices’). The same regions (x- axis and y- axis) are shown as in panel A. (C) The average functional and structural connectivity of panels A and B 
correlate well, with Spearman correlation  rS = 0.39  ( P < 10−20 , two- sided t- test). Each data point corresponds to one region- to- region pair. Data points 
for which the structural connection was exactly 0 were excluded (see panel D for their analysis). (D) The distribution of average functional connections 
of region pairs with non- zero structural connections is greater than functional connections corresponding to region pairs without structural connections 
( P < 10−15 , two- sided Kolmogorov- Smirnov test). The bottom panel shows the evidence for inferring either non- zero or zero structural connections, 
defined as the fraction between the PDFs of the top panel (fitted Gaussian distributions were used for denoising).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. cRBM functional connectivity compared to baseline methods.

https://doi.org/10.7554/eLife.83139
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were excluded). Next, we aggregated the functional connectivity matrices of all our calcium imaging 
recordings to one grand average functional connectivity matrix (Figure 6B).

For comparison, we also calculated the connectivity matrices defined by either covariance or 
Pearson correlation (Figure  6—figure supplement 1). The cRBM functional connectivity spans a 
larger range of values than either of these methods, leading to a more fine- grained connectivity matrix 
akin to the structural connectivity map (Figure 6B). This greater visual resemblance was statistically 
confirmed by calculating the Spearman correlation between structural and functional connectivity, 
which is greater for cRBM ( rS = 0.39 , Figure 6C), than for covariance- based connectivity ( rS = 0.18 , 
Figure 6—figure supplement 1 left) or correlation- based connectivity ( rS = 0.26 , Figure 6—figure 
supplement 1 right). Hence, using recordings of ∼25 min on average, cRBMs were able to identify 
functional connections that resemble the anatomical connectivity between brain regions. Strong or 
weak functional connections are predictive of present or absent structural connections respectively 
(Figure 6D), and could thus potentially be used for inference in systems where the structural connec-
tivity pattern is unknown.

Discussion
We have developed a cRBM model that accurately replicated the data statistics of brain- scale zebrafish 
recordings, thereby forming neural assemblies that spanned the entire brain. The objective of our 
study was threefold: first, to show that the cRBM model can be applied to high- dimensional data, such 
as whole- brain recordings, second, to prove that an assembly- based model is sufficient to generate 
whole- brain neural data statistics, and third, to describe the physiological properties of the assembly 
organization in the zebrafish brain and use it to create a functional connectivity map. We have shown 
that, after convergence, the cRBM- generated data not only replicated the data statistics that it was 
constrained to fit, but also extrapolated to fit the pairwise correlation statistics of neurons and HUs, 
leading to a better reconstruction of neural data than a fully connected GLM (Figure 2). These results 
thereby quantify how neural assemblies play a major role in determining the collective dynamics of 
the brain. To achieve this, cRBMs formed sparsely localized assemblies that spanned the entire brain, 
facilitating their biological interpretation (Figures 3 and 4, Figure 2—figure supplement 6). Further, 
the probabilistic nature of the cRBM model allowed us to create a mesoscale functional connectivity 
map that was largely conserved across individual fish and correlated well with structural connectivity 
(Figures 5 and 6).

The maximum entropy principle underlying the cRBM definition has been a popular method 
for inferring pairwise effective connections between neurons or assemblies of co- activating cells 
(Schneidman et  al., 2006; Tavoni et  al., 2017; Ferrari et  al., 2017; Meshulam et  al., 2017; 
Posani et al., 2018; Chen et al., 2019). However, its computational cost has limited this pairwise 
connectivity analysis to typically  ∼102  neurons. The two- layer cRBM model that we used here 
alleviates this burden, because the large number of neuron- to- neuron connections are no longer 
explicitly optimized, which enables a fast data sampling procedure (Figure 2B). However, we have 
shown that these connections are still estimated indirectly with high accuracy via the assemblies 
they connect to (Figure 2F). We have thus shown that the cRBM is able to infer the  

1
2 N2 ≈ 109

  
(symmetric) pairwise connections through its assembly structure, a feat that is computationally 
infeasible for many other methods. By implementing various algorithmic optimizations (Materials 
and methods - ‘Algorithmic Implementation’), cRBM models converged in approximately 8–12 hr 
on high- end desktop computers (also see Materials and methods - ‘Computational limitations’).

Previously, we have extensively compared cRBM performance to other dimensionality reduc-
tion techniques, including Principal Component Analysis (PCA), Independent Component Anal-
ysis (ICA), Variational Autoencoders (VAEs) and their sparse variants, using protein sequence 
data as a benchmark (Tubiana et al., 2019a). Briefly put, we showed that PCA and ICA could 
not accurately model the system due to their deterministic nature, putting too much emphasis 
on low- probability high- variance states, while VAEs were unable to capture all features of data 
due to the unrealistic assumption of independent, Gaussian- distributed latent variables. In this 
study, we repeated this comparison with sparse linear VAEs, and reached similar conclusions: 
VAEs trained using the same protocol as cRBMs failed to reproduce second- order data statis-
tics and to reconstruct neural activity via the latent layer, while the learnt assemblies were of 
substantially lower quality (indicated by a large fraction of disconnected HUs, as well as a highly 

https://doi.org/10.7554/eLife.83139
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variable assembly size; Figure  2—figure supplement 7). Additionally, while PCA has previ-
ously been successful in describing zebrafish neural dynamics in terms of their main covariances 
modes (Ahrens et al., 2012; Marques et al., 2020), we show here that it is not appropriate 
for assembly extraction due to the absence of both a compositional and stochastic nature 
(Figure 2, Figure 2—figure supplement 6). Furthermore, we have shown that the generative 
component of cRBM models is essential for quantitatively assessing that the assembly orga-
nization is sufficient for reproducing neural statistics (Figure 2), moving beyond deterministic 
clustering analyses such as k- means (Panier et al., 2013; Chen et al., 2018), similarity graph 
clustering (Mölter et  al., 2018) or non- negative matrix factorization (Mu et  al., 2019) (see 
Supplementary file 2).

After having quantitatively validated the resultant assemblies, we moved to discussing the 
biological implications of our findings. Previous studies of the zebrafish optic tectum have iden-
tified neural assemblies that were spatially organized into single dense clusters of cells (Romano 
et  al., 2015; Diana et  al., 2019; Triplett et  al., 2020). We have replicated these findings by 
observing the distinct organization of ball- shaped assemblies in the optic tectum (Figure  3L). 
However, our data extends to many other anatomical regions in the brain, where we found that 
assemblies can be much more dispersed, albeit still locally dense, consisting of multiple clusters 
of neurons (Figure  3). In sum, cRBM- inferred cell assemblies display many properties that one 
expects from physiological cell assemblies: they are anatomically localized, can overlap, encom-
pass functionally identified neuronal circuits and underpin the collective neural dynamics (Harris, 
2005; Harris, 2012; Eichenbaum, 2018). Yet, the cRBM bipartite architecture lacks many of the 
traits of neurophysiological circuits. In particular, cRBMs lack direct neuron- to- neuron connections, 
asymmetry in the connectivity weights and a hierarchical organization of functional dependencies 
beyond one hidden layer. Therefore, to what extent cRBM- inferred assemblies identify to neuro-
physiological cell assemblies, as postulated by Hebb, 1949 and others, remains an open question.

cRBM allowed us to compute the effective, functional connections between each pair of neurons, 
aggregated to functional connections between each pair of regions, by perturbing neural activity 
in silico. Importantly, we found that this region- scale connectivity is well- conserved across spec-
imen. This observation is non- trivial because each recording only lasted ∼25 min, which represents 
a short trajectory across accessible brain states. It suggests that, although each individual brain 
may be unique at the neuronal scale, the functional organization could be highly stereotyped at a 
sufficiently coarse- grained level.

It would be naive to assume that these functional connections equate biophysical, structural 
connections (Das and Fiete, 2020). Both represent different, yet interdependent aspects of the 
brain organization. Indeed, we found that structural connectivity is well- correlated to functional 
connectivity, confirming that functional links are tied to the structural blueprint of brain connectivity 
(Figure 6). Furthermore, strong (weak) functional connections are predictive of present (absent) 
structural connections between brain regions, although intermediate values are ambiguous.

It will be crucial to synergistically merge structural and dynamic information of the brain to truly 
comprehend brain- wide functioning (Bargmann and Marder, 2013; Kopell et al., 2014). Small 
brain organisms are becoming an essential means to this end, providing access to a relatively large 
fraction of cells (Ahrens and Engert, 2015). To generate new scientific insights it is thus essential 
to develop analytical methods that can scale with the rapidly growing size of both structural and 
dynamic data (Helmstaedter, 2015; Ahrens, 2019). In this study, we have established that the 
cRBM can model high- dimensional data accurately, and that its application to zebrafish recordings 
was crucial to unveil their brain- scale assembly organization. In future studies, cRBMs could be 
used to generate artificial data whose statistics replicate those of the zebrafish brain. This could 
be used for further in silico ablation and perturbation studies with strong physiological footing, 
crucial for developing hypotheses for future experimental work (Jazayeri and Afraz, 2017; Das 
and Fiete, 2020). Lastly, the application of cRBMs is not specific to calcium imaging data, and 
can therefore be readily applied to high- dimensional neural data obtained by other recording 
techniques.

https://doi.org/10.7554/eLife.83139
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Materials and methods
Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Software, algorithm cRBM algorithm

This paper and 
Tubiana and 
Monasson, 2017

github.com/ 
jertubiana/PGM

Materials and methods - ‘Restricted Boltzmann 
Machines’ , ‘Compositional Restricted Boltzmann 
Machine’ and Algorithmic Implementation

Software, algorithm Fishualizer Migault et al., 2018

bitbucket.org/ 
benglitz/fishualizer_ 
public

Software, algorithm
Blind Sparse 
Deconvolution Tubiana et al., 2020

github.com/ 
jertubiana/BSD

Software, algorithm ZBrain Atlas Randlett et al., 2015
engertlab.fas.harvard. 
edu/Z-Brain

Software, algorithm mapzebrain atlas Kunst et al., 2019
fishatlas.neuro.mpg. 
de

Software, algorithm
MATLAB (data 
preprocessing) MathWorks

mathworks.com/ 
products/matlab.html

Software, algorithm

Computational 
Morphometry Toolkit 
(CMTK) NITRC

nitrc.org/projects/ 
cmtk

Software, algorithm Python
Python Software 
Foundation python.org

Strain, strain background 
(Danio rerio, nacre 
mutant) Tg(elavl3:H2B- GCaMP6f) Quirin et al., 2016

Strain, strain background 
(Danio rerio, nacre 
mutant) Tg(elavl3:H2B- GCaMP6s)

Vladimirov et al., 
2014

Data and code availability
The cRBM model has been developed in Python 3.7 and is available at: https://github.com/jertubiana/ 
PGM, (copy archived at swh:1:rev:caf1d9fc545120f7f1bc1420135f980d5fd6c1fe; Tubiana and van 
der Plas, 2023). An extensive example notebook that implements this model is provided here.

Calcium imaging data pre- processing was performed in MATLAB (Mathworks) using previously 
published protocols and software (Panier et  al., 2013; Wolf et  al., 2017; Migault et  al., 2018; 
Tubiana et al., 2020). The functional data recordings, the trained cRBM models and the structural and 
functional connectivity matrix are available at https://gin.g-node.org/vdplasthijs/cRBM_zebrafish_ 
spontaneous_data.

Figures of neural assemblies or neurons (Figures 1 and 3) were made using the Fishualizer, which 
is a 4D (space +time) data visualization software package that we have previously published (Migault 
et al., 2018), available at https://bitbucket.org/benglitz/fishualizer_public. Minor updates were imple-
mented to tailor the Fishualizer for viewing assemblies, which can be found at https://bitbucket.org/ 
benglitz/fishualizer_public/src/assembly_viewer.

All other data analysis and visualization was performed in Python 3.7 using standard packages 
(numpy Harris et al., 2020), scipy (Virtanen et al., 2020), scikit- learn (Pedregosa, 2011), matplotlib 
(Hunter, 2007), pandas (McKinney, 2010), seaborn (Waskom, 2021), h5py. The corresponding code 
is available at https://github.com/vdplasthijs/zf-rbm (copy archived at swh:1:rev:b5df4e37434c0b181
20485b8d856596db0b92444; van der Plas, 2023).

Zebrafish larvae
Experiments were conducted on nacre mutants, aged 5–7 days post- fertilization (dpf). Larvae were 
reared in Petri dishes at 28  °C in embryo medium (E3) on a 14/10  hr light/dark cycle, and were 
fed powdered nursery food every day from 6 dpf. They were expressing either the calcium reporter 
GCaMP6s (fish 1–4, 6, and 8) or GCaMP6f (fish 5 and 7) under the control of the nearly pan- neuronal 
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promoter elavl3 expressed in the nucleus Tg(elavl3:H2B- GCaMP6). Both lines were provided by Misha 
Ahrens and published by Vladimirov et  al., 2014 (H2B- GCaMP6s) and Quirin et  al., 2016 (H2B- 
GCaMP6f). Experiments were approved by Le Comité d’Éthique pour l’Experimentation Animale 
Charles Darwin C2EA- 05 (02601.01).

Light-sheet microscopy of zebrafish larvae
Spontaneous neural activity (i.e. in the absence of sensory stimulation) was recorded in larval zebrafish 
using light- sheet microscopy, which acquires brain- scale scans by imaging multiple  z - planes sequen-
tially (Panier et al., 2013; Wolf et al., 2017; Migault et al., 2018). Larvae were placed in 2% low 
melting point agarose (Sigma- Aldrich), drawn tail- first into a glass capillary tube with 1  mm inner 
diameter via a piston and placed in chamber filled with E3 in the microscope. Recordings were of 
length 1514 ± 238 seconds (mean ± standard deviation), with a brain volume imaging frequency of 
3.9 ± 0.8 Hz.

The following imaging pre- processing steps were performed offline using MATLAB, in line with 
previously reported protocols (Panier et al., 2013; Migault et al., 2018). Automated cell segmenta-
tion was performed using a watershed algorithm (Panier et al., 2013; Migault et al., 2018) and fluo-
rescence values of pixels belonging to the same neuron was averaged to obtain cell measurements. 
The fluorescence intensity values  F  were normalized to  ∆F/F = (F − ⟨F⟩)/(⟨F⟩ − F0)  where  ⟨F⟩  is the 
baseline signal per neuron and F0 is the overall background intensity (Migault et al., 2018). The  ∆F/F  
activity of different imaging planes was subsequently temporally aligned using interpolation (because 
of the time delay between imaging planes; Migault et al., 2018) and deconvolved to binarized spike 
traces using Blind Sparse Deconvolution (BSD) (Tubiana et al., 2020). BSD estimates the most likely 
binary spike trace by minimizing the L2 norm of the difference between the estimated spike trace 
convolved with an exponential kernel and the ground- truth calcium data, using L1 sparsity regular-
ization and online hyperparameter optimization. Calcium kernel time constants used for deconvolu-
tion were inferred using BSD on the spontaneous activity of three different fish (approximately 5000 
neurons per fish, recorded at 10 Hz, previously reported by Migault et al., 2018). For the GCaMP6s 
line, we used a rise time of 0.2 s and a decay time of 3.55 s; for the GCaMP6f line, we used 0.15 s and 
1.6 s, respectively.

Brain activity was recorded of 15 animals in total. Of these recordings, 1 was discarded because of 
poor image quality and 6 were discarded because neurons were inactive (defined by less than 0.02 
spikes/(neurons × time points)), hence leaving 8 data sets for further analysis. The recorded brains 
were then registered onto the ZBrain Atlas (Randlett et al., 2015) and the mapzebrain atlas (Kunst 
et al., 2019) for anatomical labeling of neurons (Migault et al., 2018). The ZBrain Atlas was used in 
Figures 1–4 because of its detailed region descriptions (outlining 294 regions in total). However, we 
also registered our data to the mapzebrain atlas (72 regions in total) in order to compare our results 
with the structural connectivity matrix which was defined for this atlas only (Kunst et al., 2019). Only 
neurons that were registered to at least 1 ZBrain region were used for analysis (to filter imaging arte-
facts). This resulted in  40709 ± 13854  neurons per recording (mean ± standard deviation, minimum = 
23446, maximum = 65517).

Maximum entropy principle
Here, we provide in brief the general derivation of the class of maximum entropy probabilistic models. 
Restricted Boltzmann Machines are an instance of this model, which is detailed in the following sections. 
The maximum entropy principle is used to create probabilistic models  P(x)  (where  x  denotes one 
data configuration sample) that replicate particular data statistics fk, but are otherwise most random, 
and therefore least assumptive, by maximizing their entropy  H = −

∑
x P(x) log(P(x)) (Gardella et al., 

2019). The goal of the model is to match its model statistics  ⟨fk⟩model =
∑

x P(x)fk(x)  to the empirical 
data statistics  ⟨fk⟩data = Fk . This is done using Lagrange multipliers  Λk :

 

�H = −
∑

x
P(x) log

(
P(x)

)
−

∑
k

Λk

(∑
x

P(x)fk(x) − Fk

)

  
(5)

which yields, when  ̃H   is maximized with respect to  P(x) , the Boltzmann distribution (see, e.g., Bialek, 
2012 for a full derivation):

https://doi.org/10.7554/eLife.83139
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P(x) = 1

Z
exp

(
− ln 2

∑
k

Λkfk(x)

)
= 1

Z
exp

(
−E(x)

)
  

(6)

where  E(x)  is defined as the resulting energy function. Importantly, the data dependency ( Fk ) disap-
pears when going from Equation 5 to Equation 6. Hence, the maximum entropy principle only defines 
the shape of the distribution  P(x) , but not its specific parameters  Λk  (Bialek, 2012). In the case of RBM, 
these are then optimized using maximum likelihood estimation, as detailed in the sections below.

Motivation for choice of statistics
The derivation above describes the general maximum entropy model for a set of statistics  {fk} . The 
objective of this study is to extract the assembly structure from neural data, therefore creating two 
layers: a visible (neural data) layer  v = (v1, v2, ..., vN)  and a hidden (latent) layer  h = (h1, h2, ..., hM) . The 
model should capture the mean activity of each neuron  ⟨vi⟩ , their pairwise correlations  ⟨vivj⟩ , the 
neuron- HU interactions  ⟨vihµ⟩  and a function of  hµ . The latter is determined by the potential  U  , which 
we set to be a double Rectified Linear Unit (dReLU), as motivated in the following sections. Fitting 
all  N2  pairwise interactions  ⟨vivj⟩  is computationally infeasible, but under the cell assembly hypoth-
esis we assume that this should not be necessary because collective neural behavior is expected to 
be explained by membership to similar assemblies via  ⟨vihµ⟩ , and can therefore be excluded. We 
later show that pairwise correlations are indeed optimized implicitly (Figure 2). All other statistics are 
included and therefore explicitly optimized, also see Equation 14.

Restricted Boltzmann machines
A Restricted Boltzmann Machine (RBM) is an undirected graphical model defined on a bipartite graph 
(Smolensky, 1986; Hinton, 2002; Hinton and Salakhutdinov, 2006), see Figure 2A. RBMs are consti-
tuted by two layers of random variables, neurons  v  and Hidden Units (HUs)  h , which are coupled by 
a weight matrix  W . There are no direct couplings between pairs of units within the same layer. Here, 
each visible unit vi corresponds to a single recorded neuron with binary (spike- deconvolved) activity 
( vi(t) ∈ {0, 1} ). Each Hidden Unit (HU)  hµ  corresponds to the (weighted) activity of its neural assembly 
and is chosen to be real- valued. The joint probability distribution  P(v, h)  writes (Hinton and Salakhut-
dinov, 2006; Tubiana and Monasson, 2017):

 

P(v, h) = 1
Z

exp
(
−E(v, h)

)
= 1

Z
exp


∑

i
givi −

∑
µ

Uµ(hµ) +
∑
i,µ

wi,µvihµ




  
(7)

where  E  is the energy function and  Z =
∑

v
´

h dv dh · exp
(
−E(v, h)

)
  is the partition function. The 

weights gi and potentials  Uµ  control the activity level of the visible units and the marginal distribu-
tions of the HUs respectively, and the weights  wi,µ  couple the two layers. Note that while  v  is directly 
observed from the neural recordings,  h  is by definition unobserved (i.e. hidden) and is sampled from 
the observed  v  values instead.

From data to features
Given a visible layer configuration  v , a HU  hµ  receives the input  Iµ(v) =

∑
i wiµvi ≡ wµ

Tv  and, owing 
to the bipartite architecture, the conditional distribution  P(h|v)  factorizes as:

 
P(h|v) =

∏
µ

P(hµ|v) =
∏
µ

exp
(
− Uµ(hµ) + hµIµ(v) − Γµ(Iµ(v))

)

  
(8)

where  Γµ(I) = log
(´

h dh · exp
(
−Uµ(h) + hI

))
  is the cumulant generating function associated to the 

potential  Uµ  that normalizes Equation 8 (Tubiana et al., 2019b). The average activity of HU  hµ  asso-
ciated to a visible configuration  v  is given by a linear- nonlinear transformation (as defined by the 
properties of the cumulant generating function):

 
⟨hµ|v⟩ = ∂Γµ(Iµ(v))

∂I
= Γ′

µ(wµ
Tv)

  
(9)
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Throughout the manuscript, we use this definition to compute HU activity  hµ(t) = ⟨hµ|v(t)⟩  (e.g., in 
Figure 4).

From features to data
Conversely, given a hidden layer configuration  h , a visible unit vi receives the input 

 Ii(h) =
∑

µ wi,µhµ ≡ wi
Th  and the conditional distribution factorizes as:

 
P(v|h) =

∏
i

P(vi|h) ∝
∏

i
exp

((
gi + Ii(h)

)
vi

)

  
(10)

and the average sampled vi activity is given by:

 ⟨vi|h⟩ = σ(wi
Th + gi)  (11)

where  σ(x) = 1/(1 + e−x)  is the logistic function. Hence, a sampled visible layer configuration  v  is 
obtained by a weighted combination of the HU activity followed by Bernoulli sampling. RBMs are 
generative models, in the sense that they can generate new, artificial data using Equations 8 and 10. 
Figure 2B illustrates this Markov Chain Monte Carlo (MCMC) process, by recursively sampling from 

 P(h|v)  and  P(v|h) , which converges at equilibrium to  P(v, h) .

Marginal distributions
The marginal distribution  P(v)  has a closed- form expression because of the factorized conditional 
distribution of Equation 9 (Tubiana et al., 2019a; Tubiana et al., 2019b):

 

P(v) =
ˆ M∏

µ=1
dhµ · P(v, h) = 1

Z
exp




N∑
i=1

givi +
M∑

µ=1
Γµ(Iµ(v))




  
(12)

For a quadratic potential  Uµ(h) = γµh2
µ

2 + θµhµ , the cumulant generating function would also be 
quadratic and  P(v)  would reduce to a Hopfield model, that is, a pairwise model with an interaction 
matrix  Jij =

∑
µ

wiµwjµ
γµ   (Tubiana et al., 2019a). Otherwise,  Γµ  is not quadratic, yielding high- order 

effective interaction terms between visible units and allowing RBMs to express more complex distri-
butions. Importantly, the number of parameters remains limited, controlled by  M   and does not scale 
as  N2  (unlike pairwise models).

Choice of HU potential
The choice of HU potential determines three related properties: the HU conditional distribution  P(h|v) , 
the transfer function of the HUs and the parametric form of the marginal distribution  P(v) . Hereafter 
we use the double- Rectified Linear Unit (dReLU) potential:

 
Uµ(h) = 1

2
γµ,+h2

+ + 1
2
γµ,−h2

− + θµ,+h+ + θµ,−h−, where h+ = max(h, 0), h− = min(h, 0)
  

(13)

Varying the parameters  {γµ,+, γµ,−, θµ,+, θµ,−}  allows the potential to take a variety of shapes, 
including quadratic potentials ( γµ,+ = γµ,− ,  θµ,+ = θµ,− ), ReLU potentials  (γµ,− → ∞)  and double- well 
potentials (Tubiana et al., 2019b). The associated cumulant generating function  Γ(I)  is non- quadratic 
in general, and depending on the parameters, the transfer function can be linear, ReLU- like (asym-
metric slope and thresholding) or logistic- like (strong local slopes for binarizing inputs). Closed- form 
expressions of  Γ  are detailed in Tubiana et al., 2019a; Tubiana et al., 2019b, and its derivatives are 
also detailed in Tubiana, 2018, p49- 50. Note that the dReLU potential  Uµ  and distribution  P(v)  are 
invariant to the sign swap transformation  γµ,+, θµ,+ ⇐⇒ γµ,−, θµ,−  and  wiµ ⇐⇒ −wiµ ∀ i,µ  (leading 
to  hµ ⇐⇒ −hµ ). For visual clarity, we perform this sign swap transformation after training on all HUs 
with predominantly negative weights (defined by  

∑
i wi,µ < 0 ). Subsequently all HUs are positively 

activated if the group of neurons to which it connects is strongly active.

https://doi.org/10.7554/eLife.83139
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RBM training
The RBM is trained by maximizing the average log- likelihood of the empirical data configurations 

 L = ⟨log P(v)⟩data , using stochastic gradient descent methods. The gradient update steps are derived 
by calculating the derivative of  L , using Equation 12, with respect to the model parameters (Tubiana 
et al., 2019a):

 

∂L
∂gi

= ⟨vi⟩data − ⟨vi⟩model
∂L
∂wiµ

= ⟨vihµ⟩data − ⟨vihµ⟩model

∂L
∂θµ,±

= −⟨hµ,±⟩data + ⟨hµ,±⟩model

∂L
∂γµ,±

= −1
2

⟨
h2
µ,±

⟩
data

+ 1
2

⟨
h2
µ,±

⟩
model  

(14)

Each gradient of  L  is thus the difference between a data statistic  ⟨fk⟩data  and a model statistic  ⟨fk⟩model . 
Hence the model learns to match these statistics to the training data. Importantly, model statistics 

 ⟨fk⟩model  cannot be evaluated exactly due to the exponentially large number of data configurations 
(e.g.  2N   visible configurations). Therefore they are approximated by computing the statistics of model- 
generated data using the MCMC sampling scheme defined with Equations 8 and 10 (see Materials 
and methods - ‘Matching data statistics to model statistics’ for more detail). MCMC sampling of a 
Boltzmann distribution in such high- dimensional space is in general very challenging owing to the 
exponentially long time to reach equilibrium. We use the persistent contrastive divergence approxi-
mation (Tieleman, 2008) and discuss its validity below.

Compositional restricted boltzmann machine
In the previous sections, we have described the general properties of RBMs. We now motivate the 
specific RBM model choices that we have implemented, such as the dReLU potential and sparsity 
regularization, by discussing their impact on the properties of RBM- generated data.

Directed graphical models, for example, PCA, ICA, sparse dictionaries or variational autoencoders, 
prescribe a priori statistical constraints for their data representations, such as orthogonality/inde-
pendence or specific marginal distributions such as Gaussian/sparse distributions. In contrast, the 
statistical properties of the representation of the data learned by RBMs are unknown a priori by 
construction (because of the maximum entropy principle). Instead, they emerge from the structure 
of the weight matrix, the potentials and the recursive back- and- forth sampling procedure described 
above. We have therefore previously studied the properties of typical samples of RBM with random 
weights as a function of the visible and hidden unit potentials and properties of the weight matrix 
using statistical mechanics tools (Tubiana and Monasson, 2017; Tubiana et al., 2019a). We have 
identified the three following typical behaviors, or phases.

In the ferromagnetic phase, a typical sample from  P(v, h)  has a single strongly activated HU ( m(t) ∼ 1 , 
where  m(t)  is the number of activated HUs at time  t ), whereas the others are not or merely weakly 
activated. The corresponding active visible units vi are defined by the weight vector  wµ⋆  associated to 
the active HU  hµ⋆  (see Equation 10).

In the spin- glass phase, a typical sample does not have any relatively strongly activated HUs, but 
instead many moderately activated ones ( m(t) ∼ M  ). They interfere in a complex fashion to produce 
different visible unit configurations and there is no clear correspondence between the weight matrix 
and a typical data configuration.

Finally, in the compositional phase, a typical sample from  P(v, h)  has a small number of strongly acti-
vated HUs ( 1 ≪ m(t) ≪ M  ) whereas the others are weak or silent. Their weights are linearly combined 
through Equation 10 to produce the corresponding visible layer configuration. The compositional 
phase is desirable because, firstly, there exists a simple link between the weight matrix and typical 
data configurations (they are obtained by combining a few weights), which facilitates interpretation of 
biological systems (Tubiana et al., 2019b). Secondly, the corresponding neural activity distribution is 
rich, as different choices of HU subsets yield a combinatorial diversity of visible layer configurations. 
Moreover, the modular nature of the compositional phase facilitates the assembly organization of 
neural dynamics, as motivated in the Introduction.

https://doi.org/10.7554/eLife.83139
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A set of sufficient conditions for the emergence of the compositional phase are (Tubiana and 
Monasson, 2017):

1. The HUs are unbounded and real- valued with a non- linear, ReLU- like transfer function.
2. The weight matrix  W  is sparse.
3. The columns  wµ  of the weight matrix have similar norm. (If a weight column associated to one 

HU is much larger than the others, visible configurations are solely aligned to it according to 
Equation 10.)

The first condition is satisfied by the dReLU potential (but not by quadratic potentials or binary- valued 
HUs). The second condition is enforced in practice by adding a L1 sparse penalty term  λ ·

∑
iµ |wiµ|  to 

the log- likelihood cost function. In our experiments, the optimal sparsity parameter  λ  was determined 
to be  λ = 0.02  by cross- validation (Figure 2—figure supplement 1). The final condition is achieved 
by enforcing that  Var(hµ) = 1  and  ⟨hµ⟩ ∼ 0 ∀ µ . This is done by an appropriate reparameterization of 
the HU potential of Equation 13 and a batch- norm–like procedure, described in detail in Tubiana, 
2018. This normalization promotes homogeneity among HU importance, preventing some units from 
being disconnected or others from dominating. In addition, ensuring that  hµ = O(1)  irrespective of 
the visible layer size (as opposed to e.g.,  

1
2 (γ+ + γ−) = 1  which yields  hµ ∼

√
N  ) avoids the problem of 

ill- conditioned Hessians that was previously described by Hinton, 2012.
To emphasise the departure from the classic RBM formulation in this study, we name our model 

compositional RBM (cRBM).

Algorithmic implementation
In the previous sections, we have described the cRBM model in full mathematical detail. The corre-
sponding algorithmic implementation was adapted from Tubiana et al., 2019b. In addition, we have 
made several major implementation and algorithmic changes to accommodate the large data size of 
the zebrafish neural recordings. We provide the code open- source, and describe the code improve-
ments and hyperparameter settings in this section. The following improvements were made, leading 
to a substantial reduction of computation time:

•	 Python 3 and numba (Lam et al., 2015) were used to compile custom functions, enabling SIMD 
vectorization and multicore parallelism.

•	 The sampling of  P(hµ|Iµ)  and evaluating its cumulant generating function  Γµ  and various 
moments requires repeated and costly evaluation of error functions erf and related functions 
(Tubiana, 2018, p49- 50). Fast numerical approximations of these functions were implemented 
based on Abramowitz et al., 1988 (p299).

•	 The number of memory allocation operations was minimized.
•	 The optimization algorithm was changed from stochastic gradient ascent to RMSprop 

(i.e. ADAM without momentum) with learning rate  5 · 10−4  to  5 · 10−3 ,  β1 = 0 ,  β2 = 0.999 , 
 ϵ = 10−6 , see Kingma and Ba, 2014 for a definition of the parameters. Compared to the orig-
inal stochastic gradient ascent, the adaptive learning rates of RMSprop/ADAM yield larger 
updates for the weights attached to neurons with very sparse activity, resulting in substantially 
faster convergence.

Hyperparameter settings
The following hyperparameters were used in the experiments of this manuscript:

•	 Number of hidden unit  M  : 200. This value was determined by cross- validation (Figure 2—figure 
supplement 1) on one data set (example fish #3). Because this cross- validation procedure was 
computationally expensive, the same value was used for all other data sets, except for 3 data 
sets which used  M = 100  because their  N ≈ 1

2 N#3 .
•	 Sparse regularization penalty  λ : 0.02 (determined by cross- validation).
•	 Batch size: 100, 200, or 400. Larger batch sizes yield longer training time but more stable 

training; batch size was increased if training failed to converge.
•	 Number of Monte Carlo chains: 100.
•	 Number of gradient updates:  2 · 105 .
•	 Number of Monte Carlo steps between each gradient update: 15.
•	 Initial learning rate  η : between  5 · 10−4  and  5 · 10−3 . We used  5 · 10−3  by default and if 

weight divergence was observed, the learning was reinitialized with a reduced learning rate. 
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This occurred notably for high- M   and low- λ  models during the cross- validation procedure of 
Figure 2—figure supplement 1.

•	 Learning rate annealing scheme: the learning rate geometrically decayed during training, 
starting after 25% of the gradient update steps, from its initial value  η  to a final value of  10−5 .

•	 Number of training data samples: 70% of frames of each recording (=4086 training data samples 
on average), see section ‘Train / test data split’ for details.

Computational limitations
We found that 57.5% ( = 23/40 ) of cRBMs with optimal  (λ, M)  settings successfully converged. cRBM 
models of these zebrafish data sets could be estimated in approximately 8–12 hr using 16 CPU threads 
(Intel Xeon Phi processor). The  (λ, M) - cross- validation was therefore completed in three weeks using 
two desktop computers. Previously, we observed that this model requires a fixed number of gradient 
updates to converge, rather than a fixed number of epochs (Tubiana et al., 2019a; Tubiana et al., 
2019b; Bravi et al., 2021). Hence, in principle, runtime does not strictly depend on the recording 
length, as the number of epochs can be reduced for longer recordings (assuming that the data distri-
bution remains statistically stationary).

Validity of the persistent contrastive divergence algorithm
Training RBM requires extensive MCMC sampling which is notoriously difficult for high- dimensional 
data sets. We resolve this by using Persistent Contrastive Divergence (PCD) to approximate the gradi-
ents (Tieleman, 2008). In this section, we discuss why this worked to successfully converge, despite 
the very large data size.

The typical number of Monte Carlo steps required to transition from one energy minimum to 
another through an energy barrier  ∆E  follows the Arrhenius law, scaling as  e∆E . In the thermo-
dynamic limit ( N → ∞ ),  ∆E  scales as the system size  N   multiplied by the typical energy required 
to flip a single visible unit, corresponding here to the inputs received from the hidden layer  I  . In 
contrast, for PCD only a limited number of MC steps (here, 15) are applied between each gradient 
update. Three factors explain why reasonably successful convergence was achieved in the trainings 
presented here.

Firstly, the use of the L1 regularization limits the magnitude of the weights and therefore limits the 
input scale  I  . Secondly, in the compositional phase, the energy barriers do not scale as the full system 
size  N   but rather as the size of one assembly  pN   where  p  is the fraction of non- zero weights (Tubiana 
and Monasson, 2017). Indeed, transitioning from one energy minimum, characterized by a subset of 
strongly activated HUs, to another minimum, characterized by another set of strongly activated HUs, is 
done by gradually morphing the first set into the second (Roussel et al., 2021). Compared to a direct 
transition, such a path is favored because the intermediate states are thermodynamically stable and 
energy barriers are smaller as each HU flip has an energy cost  ∼pN  . Lastly, throughout PCD training, 
MCMC sampling is not performed at thermal equilibrium and the model updates of the parame-
ters of the distribution promote mixing (Tieleman and Hinton, 2009). This is seen from Equation 
14: the log- likelihood gradient is the difference between the gradient of the energy averaged over 
the empirical data and the energy averaged over MCMC samples. Ascending the gradient amounts 
to pushing down the energy of data configurations and pushing up the energy of MCMC samples, 
thereby promoting mixing of the Markov chains.

Overall, combining small learning rates (and large number of gradient updates), large regulariza-
tion, large number of Markov Chains and Monte Carlo steps has allowed convergence to be reached 
for the majority of cRBM training sessions.

Functional connectivity inference
Effective connectivity matrix
In this section, we present a derivation of the effective coupling matrix between neurons from the 
marginal distribution  P(v)  using cRBMs. This is achieved by perturbing the activity of each neuron 
individually and quantifying the effect on other neurons. We first define the local coupling  Jij  between 
two neurons vi and vj for a generic probability distribution  P(v1, v2, · · · , vN) , given a data configuration 
 v :
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Jij(v) = log
(

P(vi = 1|v1, · · · , vi−1, vi+1, vj = 1, · · · , vN)
P(vi = 1|v1, · · · , vi−1, vi+1, vj = 0, · · · , vN)

)

− log
(

P(vi = 0|v1, · · · , vi−1, vi+1, vj = 1, · · · , vN)
P(vi = 0|v1, · · · , vi−1, vi+1, vj = 0, · · · , vN)

)

  

(15)

In other words,  Jij  is defined as the impact of the state of neuron  j  on neuron  i  in the context of 
activity pattern  v . Hence, the effective connectivity matrix  J  mathematically defines the functional 
connections, which can only be done using a probabilistic model  P(v) . A positive (negative) coupling 

 Jij  indicates correlated (anti- correlated) collective behavior of neurons  i, j . This effective coupling value 
is symmetric (because of Bayes’ rule):  Jij(v) = Jji(v) . For context, note that  Jij(v)  is uniformly zero for 
an independent model of the form  P(v1, · · · , vN) =

∏
i Pi(vi) , and that for a maximum entropy pairwise 

(Ising) model, with 
 
P(v1, · · · , vN) = 1

Z exp

(
∑

i
givi +

∑
i<j

Jising
ij vivj

)

 
, the  Jij(v)  matrix exactly identifies with 

the coupling matrix  J
ising
ij  , and does not depend on the data configuration  v  (so  Jij(v) = Jij ).

However, in general, and for RBMs in particular,  Jij(v)  depends on the data set  v , and an overall 
coupling matrix can be derived by taking its average over all data configurations:

 Jij = ⟨Jij(v)⟩data  (16)

Although Equation 16 has a closed- form solution for RBMs (by inserting Equation 12), a naive evalua-
tion requires  O(N3MT)  operations where  T   is the number of data samples. However, a fast and intuitive 
approximation can be derived by performing a second- order Taylor expansion of  Γµ(Iµ) :

 
Jij =

M∑
µ=1

wiµwjµ
⟨
Γ′′
µ(v)

⟩
data =

M∑
µ=1

wiµwjµ⟨Var
(
hµ|v

)
⟩data

  
(17)

Equation 17 is exact for quadratic potential and in general justified as the contribution of neurons 

 i, j  is small compared to the scale of variation of  Γµ ,  O(
√

pN)  where  p  is the fraction of non- zero 
couplings. In conclusion, we have mathematically derived the effective coupling between any two 
neurons  i  and  j . Intuitively, two neurons  i, j  are effectively connected if they are connected to the 
same HUs (Equation 17).

From inter-neuron to inter-region connectivity
In the above section, we have derived the inter- neuronal connectivity matrix  J . This matrix is then 
aggregated to an inter- regional connectivity matrix  JR  by taking the normalised L1- norm of the corre-
sponding  J  matrix block elements (i.e.,  J

R
km =

∑
i∈Rk,j∈Rm

|Jij|/(NRk · NRm ) , where  Rk  is the set of neurons 
in region  k ).

Next, to derive the average connectivity matrix across multiple recordings, we used a weighted 
average of the individual recordings, with a region- pair specific weight equal to the length of the 
recording multiplied by the sum of the number of neurons in both regions (also see Section - ‘Spec-
imen averaging of connectivity matrices’). Compared to a naive average, this weighted average 
accounts for the variable number of neurons per region between recordings.

Training cRBM models for connectivity estimates
Constructing the functional connectivity matrix of a cRBM does not require test data, but just the 
estimated weight matrix  W  (as explained above). Therefore we trained new cRBMs using the entire 
recordings (100% of data) to fully use the information available. cRBM training is stochastic, and to 
mitigate the possible variability that could arise we trained five cRBMs for each recording. Then, to 
assess convergence, we selected all cRBMs with  0.01 < std(w) < 0.1 , where std denotes standard devi-
ation, for further functional connectivity analysis (yielding 23 cRBMs for 8 data sets in total). Connec-
tivity estimates of multiple cRBM models per data sets were averaged.

Connectivity inference baselines
We considered four additional connectivity inference baseline methods:

•	 The covariance matrix.
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•	 The Pearson correlation matrix.
•	 The sparse inverse covariance matrix inferred by graphical LASSO (Friedman et al., 2008) (as 

implemented in scikit- learn with default settings Pedregosa, 2011). Graphical LASSO is an 
efficient method for inference of large scale connectivity. Unfortunately, the implementation 
available failed to converge in reasonable time due to the high dimensionality of the data.

•	 The Ising model with pseudo- likelihood maximization (PLM) inference (Ravikumar et al., 2010).

Results obtained with the covariance and correlation matrices are presented in Figure 6—figure 
supplement 1. The connectivity matrices obtained by the PLM Ising model (not shown) correctly 
identified the diagonal entries of the region- region matrix, but not the off- diagonal coefficients and 
had a weaker correlation with the structural connectivity matrix than the covariance and correlation 
matrices ( rS = 0.06  using 4 fish).

Optimizing the free parameters of cRBM
We set the free parameters  λ  (sparsity regularization parameter) and  M   (number of HUs) by cross- 
validating a large range of  (λ, M)  values for one data set (fish #3). This was done by training cRBMs on 
70% of the data, and evaluating model performance on the remaining test data, as detailed below. 
The resulting optimal values could then be used for all data sets (where  M   was scaled with the number 
of neurons  N  ). Importantly, the  (λ, M)  parameters implicitly tune the average assembly size. Increasing 
the number of HUs and/or increasing the regularization strength decreases the average number of 
neurons per assembly (Tubiana et al., 2019a). Intuitively, assemblies that are too small do not have 
the capacity to capture high- order correlations, while assemblies that are too large would fail to 
account for local co- activations. Hence, the  (M,λ) - cross- validation effectively identifies the optimal 
assembly sizes that fit the data statistics.

Train / test data split
We split up one recording (fish #3) into training data (70% of recording) and withheld test data 
(30% of recording) for the free parameter ( λ, M  ) optimization procedure. This enabled us to assess 
whether the cRBMs learned to model the data statistics (as described in the main text, Figure 2, 
Figure 2—figure supplement 1), while ensuring that the cRBMs are not overfitted to the specific 
training data configurations. Importantly, this assumes that the test data comes from the same statis-
tical distribution as the training data (while consisting of different data configurations). To ensure 
this, we split up the recording of example fish #3 (used for parameter optimization) in training 
and test splits as follows (before training the cRBMs): We divided the recording of length  T   in 10 
chronological segments of equal length (so that segment 1 has time points  {t ∈ [1, T

10 )}  et cetera), 
with the rationale that by maintaining temporal order within each segment we would later be able 
to conduct dynamic activity analysis. This yielded  

(10
3
)

= 120  possible training/test splits of the neural 
data. We then evaluated the statistical similarity between the training and test split of each combi-
nation, by assessing the mean neural activity  ⟨vi⟩  and pairwise neural correlations  ⟨vivj⟩ − ⟨vi⟩⟨vj⟩  
statistics. We quantified the similarity between training and test statistics by calculating the Root 
Mean Square Error ( RMSE(x1, x2) =

√
1

Nx

∑Nx
n=1

(
x1(n) − x2(n)

)2
 ). The most similar split is defined by 

the lowest RMSE, but to show that cRBM are not dependent on picking the best possible split, but 
rather on avoiding the bad splits, we then chose to use the split with the  10th - percentile ranking 
RMSE. We hope that this aids future studies, where a potentially high number of possible splits 
prevents researchers from evaluating all possible splits, but a good split may nevertheless be found 
efficiently.

Assessment of data statistics
Please note that the loss function, the log- likelihood, is computationally intractable and therefore 
cannot be readily used to monitor convergence or goodness- of- fit after training (Fischer & Igel and 
Igel, 2012). Moreover, approximations of the log- likelihood based on annealed importance sampling 
were found to be unreliable due to the large system size. However, because (c)RBM learn to match 
data statistics to model statistics (see Materials and methods–RBM training), we can directly compare 
these to assess model performance. Therefore, we assessed the following quantities.
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Matching data statistics to model statistics
Firstly, we evaluated three statistics that cRBMs are trained to optimize: the mean activity of neurons 

 ⟨vi⟩ , the mean activity of HUs  ⟨hµ⟩  and their pairwise interactions  ⟨vihµ⟩ . Additionally, second order 
statistics of pairwise neuron- neuron interactions  ⟨vivj⟩ , HU- HU interactions  ⟨hµhν⟩  and the reconstruc-
tion quality were evaluated, which the cRBM was not constrained to fit. Monitoring HU single and 
pairwise statistics  ⟨hµ⟩  and  ⟨hµhν⟩  served two purposes: (i) validation of model convergence and (ii) 
assessing whether correlations between assemblies can be captured by this bipartite model (i.e., 
without direct couplings between hidden units or an additional hidden layer). For each statistic  ⟨fk⟩ , we 
computed its value based on empirical data  ⟨fk⟩data  and on the model  ⟨fk⟩model , which we then quanti-
tatively compared to assess model performance.

Data statistics  ⟨fk⟩data  were calculated on withheld test data (30% of recording). Naturally, the 
neural recordings consisted only of neural data  v  and not of HU data  h . We therefore computed the 
expected value of  ht  at each time point  t  conditioned on the empirical data  vt , as further detailed in 
Methods - ‘From data to features’.

Model statistics  ⟨fk⟩data  cannot be calculated exactly, because that would require one to sample all 
possible states  P(v, h) , and were therefore approximated by evaluating cRBM- generated data. Here, 
300 Monte Carlo chains were each initiated on random training data configurations and 50 configu-
rations were sampled consecutively for each chain, with 20 sampling steps between saved configura-
tions, after a burn- in period of 100 effective sampling configurations.

The  ⟨vihµ⟩  statistic (Figure 2C) was corrected for the sparsity regularization, by adding the spar-
sity regularization parameter  λ  to  ⟨vihµ⟩ : ⟨vihµ⟩model = ⟨vihµ⟩model-generated data + λ · sign(wi,µ) . Further-
more,  (vi, hµ)  pairs with exactly  wi,µ = 0  were excluded from analysis (5% of total for optimal cRBM in 
Figure 2C).

The pairwise neuron- neuron and HU- HU statistics ( ⟨vivj⟩ ,  ⟨hµhν⟩ ) were corrected for their (trivially) 
expected correlation due to their mean activities (by subtraction of  ⟨vi⟩⟨vj⟩  and  ⟨hµ⟩⟨hν⟩  respectively), 
so that only true correlations were assessed.

Calculating the normalized Root Mean Square Error
Goodness of fit was quantified by computing the normalized Root Mean Square Error (nRMSE) for each 
statistic (shown in Figure 2—figure supplement 1). The RMSE between two vectors  x1, x2  of length 

 Nx  is defined as  RMSE =
√

1
Nx

∑Nx
n=1

(
x1(n) − x2(n)

)2
 . Ordinary RMSE was normalized so that different 

statistics could be compared, where 1 corresponds to  nRMSEshuffled , where both data and model 
statistics were randomly shuffled, and 0 corresponds to  nRMSEoptimal  which is the RMSE between the 

training data and test data (by  nRMSE = 1 − RMSEordinary−RMSEshuffled
RMSEoptimal−RMSEshuffled  ).

Reconstruction quality
Additionally, we assessed the reconstruction quality of the test data. Here, the log- likelihood (LLH) 
between the test data  v  and its reconstruction  E(vrecon) = E

(
v|E

(
h|v

))
∈ [0, 1]  was computed. Because 

 vi ∈ {0, 1} , the LLH is defined as

 
LLH(vi, E(vrecon)) = 1

T

T∑
t=1

log
(
E(vrecon)(t) ∗ vi(t) + (1 − E

(
vrecon)(t)

)
∗
(
1 − vi(t)

))

  
(18)

The resulting LLH was normalized (nLLH) such that 0 corresponds to an independent model (i.e., 
fitting neural activity with  E(vrecon)(t) = ⟨vi⟩ ∀ t ) and 1 to optimal performance (which is  LLHoptimal = 0 ), 
by  nLLH = LLHordinary−LLHindependent

−LLHindependent  .

Generalized Linear Model
We used logistic regression, a Generalized Linear Model (GLM), to quantify the reconstruction quality 
of a fully connected model (i.e., with neuron- to- neuron connections, see Figure 2—figure supple-
ment 2A). Logistic regression makes a probabilistic binary prediction (Bishop, 2006), hence allowing 
direct comparison to the probabilistic estimates of neural activity by the cRBM. In logistic regres-
sion, for a neuron  vi(t)  at time  t , the activity of all other neurons  v−i(t)  at time  t  was used to predict 

 v̂i(t) = P
(
vi(t) = 1

)
= 1

1+exp (−wi·v−i(t))  where  wi  is the estimated weight vector. This was implemented 
with scikit- learn (Pedregosa, 2011), using L2 regularization. L2 regularization was favored over L1 as 
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it typically yields higher reconstruction performance; in the related context of protein contact map 
prediction, L2- regularized GLMs also better reconstructed contacts than L1- regularized GLMs (Morcos 
et al., 2011). The parameter  λGLM  was optimized to  λGLM = 1000  using cross- validation (Figure 2—
figure supplement 2B). This is a computationally intensive model to compute because of the large 
number of regressor neurons  N − 1 : only  ∼ 1000  matrix rows could be inferred in 1 day on a 16- thread 
CPU desktop computer. Therefore, we performed the cross- validation of Figure 2—figure supple-
ment 2B on 2% of all neurons (=1050 neurons) and computed the final distribution of Figure 2H on 
10% of all neurons (=5252 neurons). GLMs were trained on the same train data as cRBMs, and evalu-
ated on the same withheld test data as cRBMs (as described above).

Variational Autoencoders
Variational Autoencoders (VAEs) were implemented in Tensorflow (2.1.10) using Keras (Chollet, 
2015). For the encoder, we used a two- layer perceptron with intermediate layer size equal to the 
dimension of the latent space, a ReLU non- linearity for the intermediate layer and no non- linearity 
for the conditional mean and log- variance outputs. Batch normalization was used after each dense 
layer of the encoder. For the decoder, we used a dense layer with a sigmoid non- linearity (no batch 
normalization). To obtain sparse assemblies, a L1 penalty on the weights of the decoder was added, 
such that the latent variables correspond to sparse neural assemblies at generation time. Models 
were trained by ELBO maximization using a very similar protocol as cRBMs: 200 K updates using the 
Adam optimizer (initial learning rate  10−4 ,  β1 = 0.9 ,  β2 = 0.999  batch size: 100), with geometric decay 
schedule of learning rate after 50% of the training to a final learning rate of  10−5 . We tested the same 
hyperparameter range as for cRBMs, and selected the optimal model based on the held- out ELBO 
values (10 Gaussian samples per data configuration were used to compute the ELBO). The optimal 
hyperparameters were  M = 300 ,  λ1 = 0.01 , but several values were very close to optimal (Figure 2—
figure supplement 7A), including the value used for cRBMs ( M = 200 ,  λ1 = 0.02 ). We chose the latter 
for comparison to cRBM for the sake of simplicity, although we also included performance metrics of 
the  M = 300,λ = 0.01  VAE model (Figure 2—figure supplement 7B- H).

Regional occupancy
We determined the anatomical region labels of each neuron by registering our recordings to the 
ZBrain Atlas (as described previously). This yields a matrix  L  of size  NZBA × N  , which elements are 

 lr,i = 1  if neuron  i  is embedded in region  r  and 0 if it is not. A cRBM neural assembly of HU μ is defined 
by its weight vector  wµ  (of size  N  ). Because cRBMs converge to sparse solutions, most of the weight 
elements will be very close to 0. To determine which anatomical regions are occupied by the assembly 
neurons with significantly nonzero weights, we computed the dot product between the weight vector 

 wµ  and matrix  L , leading to a weighted region label vector (of size  NZBA ) for each HU. The matrix 
of all  M   weighted region label vectors is shown in Figure 2—figure supplement 6A for cRBM and 
Figure 2—figure supplement 6B for PCA.

The effective number of anatomical regions that one cRBM/PCA assembly is embedded in was 
then calculated using the Participation Ratio (PR) of each HU/Principal Axis. PRs are used to esti-
mate the effective number of nonzero elements in a vector, without using a threshold (Tubiana and 
Monasson, 2017). The PR of a vector  x = (x1, · · · , xn)  is defined by:

 
PR(x) =

(∑n
i=1 x2

i

)2

∑n
i=1 x4

i   
(19)

PR varies from  
1
n  when only 1 element of  x  is nonzero and  n  when all elements are equal. We therefore 

estimated the effective number of regions by multiplying PR of the weighted region label vectors with 
the total number of regions  NZBA  in Figure 2—figure supplement 6C.

Time constant calculation
The dReLU potential  Uµ  of Equation 13 can learn to take a variety of shapes, including a double- well 
potential (Tubiana et al., 2019a). HUs generally converged to this shape, giving rise to bimodal HU 
activity distributions (Figure 4). We determined the positions of the two peaks per HU using Gaussian 
Mixture Models fitted with two Gaussians. The bimodality transition point was then defined as the 

https://doi.org/10.7554/eLife.83139


 Research article Neuroscience

van der Plas, Tubiana et al. eLife 2023;11:e83139. DOI: https://doi.org/10.7554/eLife.83139  28 of 34

average between the two peaks (which was approximately 0 for most HUs). To calculate the time 
constant of state changes between the two activity modes, we subtracted the bimodality transition 
point from each HU activity  hµ  individually. For clarity, all dynamic activity traces shown (e.g. Figure 4) 
are thus bimodality transition point subtracted. The time constant of an activity trace was then defined 
as the period of a (two- state) oscillation. A HU oscillation is defined as a consecutive negative and 
positive activity interval (because the bimodality now occurs at 0). A neuron oscillation is defined as a 
consecutive interspike- interval and spike- interval (which can last for multiple time steps, for example 
see Figure 1A, right panel).

Sorting of HUs
HUs were sorted by hierarchical clustering of the Pearson correlation matrix of their dynamic activity 
(Figure 2B). Hierarchical clustering was performed using the Ward variance minimization algorithm 
that defines the distance between clusters (Virtanen et  al., 2020). This sorting of HUs (and thus 
assemblies) is maintained throughout the manuscript for the sake of consistency.

Validating that the cRBM is in the compositional phase
To validate that the cRBMs converged to the compositional phase (see section - ‘Compositional 
restricted boltzmann machine’, compositional RBM formulation), we calculated the effective number 
of active HUs per data configuration (i.e., time step)  m(t) = PR

(
h+(t)

)
· M   where PR is the participation 

ratio (Equation 19),  M   the number of HUs and  h+ = h − hinactive , where  hinactive  is the inactive peak 
as calculated with the Gaussian Mixture Models (see section - ‘Time constant calculation’), because 
PR assumes that inactive elements are approximately zero (Tubiana et al., 2019a). A cRBM is said to 
be in the compositional phase if  1 ≪ median(m) ≪ M  , which is true for all cRBMs (Figure 2—figure 
supplement 3).

Extensions of the structural connectivity matrix
The inter- region structural connectivity matrix was derived from the single cell zebrafish brain atlas 
(Kunst et al., 2019). We used the post- publication updated data set from Kunst et al., 2019 (time-
stamp: 28 October 2019). The data set consists of  N = 3098  neurons, each characterized by the 3D 
coordinates of the soma center and of its neurites; there is no distinction between dendrites and 
axons. The brain is subdivided into  R = 72  regions and each neuron is duplicated by left/right hemi-
sphere symmetry. We aim to estimate  cr,r , the average strength of the connection between two 
neurons belonging to regions  r, r′ ∈ [1, R] . For each neuron  n ∈ [1, N] , we determine, using region 
masks, the region  r(n)  where its soma is located and the cumulative length of the intersection between 
all its neurites and each region  ℓn(r) . Under the assumptions that (i) the linear density of dendritic 
spines / axon presynaptic boutons is constant and (ii) the volumetric density of neurons is identical 
throughout regions,  Ln(r)  is proportional to the volume  Vr  of region  r  times the average (bidirectional) 
connection strength between neuron  n  and any neuron of region  r . Aggregating over all neurons and 
symmetrizing, we obtain the following estimator for  cr,r :

 
cr,r′ = Symmetrized

{∑N
n=1 δr(n),r × ℓn(r′)

Vr′ ×
∑N

n=1 δr(n),r

}

  
(20)

where  δr(n),r = 1  if neuron  n  has its soma in region  r  and 0 if not. Using the same notations, the formula 
previously used in Kunst et al., 2019 is:

 
cr,r′ =

{∑N
n=1 ℓn(r) + ℓn(r′)

N(Vr′ + Vr)

}

  
(21)

Equation 20 differs from Equation 21 in three aspects:

1. It discriminates between direct and indirect connections. Previously, a structural connection 
between region  r  and region  r′  was established if a neuron had neurites with either tips or its 
soma within both regions. This may however result in indirect connections between  r  and  r′ , 
in cases where the neuron soma resides in another region  r′′ . Here, we only account for direct 
connections, resulting in an overall slightly sparser connectivity matrix.

https://doi.org/10.7554/eLife.83139
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2. It is well- defined along the diagonal, i.e., for intra- region connections, whereas in Equation 21, 
each neurite would be counted as a self- connection.

3. The denominator corrects for non- uniform sampling of the traced neurons throughout regions. 
Note that this issue only arose in the post- publication data set as non- uniform sampling was 
used to fill missing entries of the matrix.

Specimen averaging of connectivity matrices
The number of neurons in a particular brain region can vary across recordings from different spec-
imen. Since the entries of the connectivity matrix are expected to be more accurate for well- sampled 
regions, we computed the weighted average of region- to- region connections  cr,r′  as follows:

 

⟨cr,r′⟩ =
∑

Fish F cF
r,r′ · wF

r,r′∑
Fish F wF

r,r′

wF
r,r′ = TF

(
NF

Rr + NF
Rr′

)

2   

(22)

Where  TF  is the recording length and  N
F
Rr  is the number of neurons in region  r  of fish  F  that were 

recorded.

Correlation analysis of connectivity matrices
Pearson correlation was used to assess the similarity between cRBM functional connectivity matrices of 
different individual animals (Figure 5). Spearman correlation was used to compare structural connec-
tivity versus functional connectivity (Figure 6), because these two metrics do not necessarily scale 
linearly. All correlation analyses, and the Kilmogorov- Smirnov test of Figure 6—figure supplement 
1C, performed on symmetric matrices excluded one off- diagonal triangle (of symmetrical values) to 
avoid duplicates.
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Data availability
The cRBM model has been developed in Python 3.7 and is available at: https://github.com/jertubiana/ 
PGM (copy archived at swh:1:rev:caf1d9fc545120f7f1bc1420135f980d5fd6c1fe). An extensive 
example notebook that implements this model is also provided. Calcium imaging data pre- processing 
was performed in MATLAB (Mathworks) using previously published protocols and software (Panier 
et  al., 2013; Wolf et  al., 2017; Migault et  al., 2018; Tubiana et  al., 2020). The functional data 
recordings, the trained cRBM models and the structural and functional connectivity matrix are avail-
able at https://gin.g-node.org/vdplasthijs/cRBM_zebrafish_spontaneous_data. Figures of neural 
assemblies or neurons (Figure 1, 3) were made using the Fishualizer, which is a 4D (space + time) 
data visualization software package that we have previously published (Migault et al., 2018), avail-
able at https://bitbucket.org/benglitz/fishualizer_public . Minor updates were implemented to tailor 
the Fishualizer for viewing assemblies, which can be found at https://bitbucket.org/benglitz/fishual-
izer_public/src/assembly_viewer/. All other data analysis and visualization was performed in Python 
3.7 using standard packages (numpy [Harris et al., 2020], scipy [Virtanen et al., 2020], scikit- learn 
[Pedregosa, 2011], matplotlib [Hunter, 2007], pandas [McKinney, 2010], seaborn [Waskom, 2021], 
h5py). The corresponding code is available at https://github.com/vdplasthijs/zf-rbm (copy archived at 
swh:1:rev:b5df4e37434c0b18120485b8d856596db0b92444).
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