Emergence of Compositional Representations in Restricted Boltzmann Machines
J. Tubiana, R. Monasson, "Emergence of Compositional Representations in Restricted Boltzmann Machines." Physical Review Letters, 2017.
J. Tubiana, R. Monasson, "Emergence of Compositional Representations in Restricted Boltzmann Machines." Physical Review Letters, 2017.
Jérôme Tubiana, Simona Cocco, Rémi Monasson, "Learning protein constitutive motifs from sequence data." eLife, 2019.
Jérôme Tubiana, Simona Cocco, Rémi Monasson, "Learning Compositional Representations of Interacting Systems with Restricted Boltzmann Machines: Comparative Study of Lattice Proteins." Neural Computation, 2019.
Francesca Rizzato, Alice Coucke, Eleonora Leonardis, John Barton, Jérôme Tubiana, Rémi Monasson, Simona Cocco, "Inference of compressed Potts graphical models." Physical Review E, 2020.
Moshir Harsh, Jérôme Tubiana, Simona Cocco, Rémi Monasson, "‘Place-cell’ emergence and learning of invariant data with restricted Boltzmann machines: breaking and dynamical restoration of continuous symmetries in the weight space." Journal of Physics A: Mathematical and Theoretical, 2020.
Jérôme Tubiana, Sébastien Wolf, Thomas Panier, Georges Debregeas, "Blind deconvolution for spike inference from fluorescence recordings." Journal of Neuroscience Methods, 2020.
Barbara Bravi, Jérôme Tubiana, Simona Cocco, Rémi Monasson, Thierry Mora, Aleksandra Walczak, "RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles." Cell Systems, 2021.
Jérôme Tubiana, Dina Schneidman-Duhovny, Haim Wolfson, "ScanNet: an interpretable geometric deep learning model for structure-based protein binding site prediction." Nature Methods, 2022.
Yufei Xiang, Wei Huang, Hejun Liu, Zhe Sang, Sham Nambulli, Jérôme Tubiana, Kevin Williams, W. Duprex, Dina Schneidman-Duhovny, Ian Wilson, Derek Taylor, Yi Shi, "Superimmunity by pan-sarbecovirus nanobodies." Cell Reports, 2022.
Jérôme Tubiana, Yufei Xiang, Li Fan, Haim Wolfson, Kong Chen, Dina Schneidman-Duhovny, Yi Shi, "Reduced B-cell antigenicity of Omicron lowers host serologic response." Cell Reports, 2022.
Jérôme Tubiana, Dina Schneidman-Duhovny, Haim Wolfson, "ScanNet: A Web Server for Structure-based Prediction of Protein Binding Sites with Geometric Deep Learning." Journal of Molecular Biology, 2022.
Thijs Plas, Jérôme Tubiana, Guillaume Le, Geoffrey Migault, Michael Kunst, Herwig Baier, Volker Bormuth, Bernhard Englitz, Georges Debrégeas, "Neural assemblies uncovered by generative modeling explain whole-brain activity statistics and reflect structural connectivity." eLife, 2023.
Jérôme Tubiana, Lucia Adriana-Lifshits, Michael Nissan, Matan Gabay, Inbal Sher, Marina Sova, Haim Wolfson, Maayan Gal, "Funneling modulatory peptide design with generative models: Discovery and characterization of disruptors of calcineurin protein-protein interactions." PLOS Computational Biology, 2023.
Cyril Malbranke, David Bikard, Simona Cocco, Rémi Monasson, Jérôme Tubiana, "Machine learning for evolutionary-based and physics-inspired protein design: Current and future synergies." Current Opinion in Structural Biology, 2023.
Natan Nagar, Jérôme Tubiana, Gil Loewenthal, Haim Wolfson, Nir Ben, Tal Pupko, "EvoRator2: Predicting Site-specific Amino Acid Substitutions Based on Protein Structural Information Using Deep Learning." Journal of Molecular Biology, 2023.
Talk at UC San Francisco, Department of Testing, San Francisco, California
Tutorial at UC-Berkeley Institute for Testing Science, Berkeley CA, USA
Talk at London School of Testing, London, UK
Conference proceedings talk at Testing Institute of America 2014 Annual Conference, Los Angeles, CA