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SUMMARY
The recent increase of immunopeptidomics data, obtained by mass spectrometry or binding assays, opens
up possibilities for investigating endogenous antigen presentation by the highly polymorphic human leuko-
cyte antigen class I (HLA-I) protein. State-of-the-art methods predict with high accuracy presentation by HLA
alleles that are well represented in databases at the time of release but have a poorer performance for rarer
and less characterized alleles. Here, we introduce a method based on Restricted Boltzmann Machines
(RBMs) for prediction of antigens presented on the Major Histocompatibility Complex (MHC) encoded by
HLA genes—RBM-MHC. RBM-MHC can be trained on custom and newly available sampleswith no or a small
amount of HLA annotations. RBM-MHC ensures improved predictions for rare alleles and matches state-of-
the-art performance for well-characterized alleles while being less data demanding. RBM-MHC is shown to
be a flexible and easily interpretable method that can be used as a predictor of cancer neoantigens and viral
epitopes, as a tool for feature discovery, and to reconstruct peptide motifs presented on specific HLA mol-
ecules.
INTRODUCTION

Recognition of malignant and infected cells by the adaptive

immune system requires binding of cytotoxic T cell receptors to

antigens, short peptides (typically 8–11-mer) presented by the

major histocompatibilty complex (MHC) class I coded by histo-

compatibility leukocyte antigen class I proteins (HLA-I) alleles

(Figure 1A). Tumor-specific neoantigens, i.e., antigens carrying

cancer-specific mutations, are currently sought-after targets for

improving cancer immunotherapy (Yarchoan et al., 2017; Gar-

cia-Garijo et al., 2019).Computational predictions canhelp select

potential neoantigens and accelerate immunogenicity testing. To

be useful, these predictions must be specific to each HLA type.

State-of-the-art methods (Mei et al., 2020; Abelin et al., 2017;

O’Donnell et al., 2018; Sarkizova et al., 2020), such as NetMHC

(Andreatta and Nielsen, 2016; Jurtz et al., 2017; Reynisson

et al., 2020), are based on artificial neural networks trained in a

supervised way to predict peptide presentation from the known

peptide-HLA association. They are trained on large datasets at

every method release and they provide peptide-scoring

schemes that perform best on frequent alleles and well-charac-
Cell Systems 12, 195–202, Febr
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terized alleles at the time of release. Their accuracy is degraded

for rare or little studied HLA-I alleles, which are poorly repre-

sented in databases. In that case, another approach is to train

unsupervisedmodels of presentation from custom elution exper-

iments with little or no information about the peptide-HLA asso-

ciation. For instance, MixMHCp (Bassani-Sternberg and Gfeller,

2016; Bassani-Sternberg et al., 2017; Gfeller et al., 2018) can

reconstruct, from unannotated peptide sequences, a mixture

of generative models, one for each expressed HLA type. Howev-

er, it makes simplified assumptions about binding specificity and

is not designed to leverage available (albeit limited) annotation

information from the Immune Epitope Database (Vita et al.,

2019) (IEDB) to improve accuracy.

We present an alternative method for predicting peptides pre-

sented by specific class I MHCs based on Restricted Boltzmann

Machines—RBM-MHC. RBM-MHC is a scoring and classifica-

tion scheme that can be easily trained ‘‘on the fly’’ on custom da-

tasets, such as patient- or experiment-specific samples, and

more generally on newly available data. As such, RBM-MHC en-

ables improved predictions for rare alleles at a fast pace without

waiting for new releases of general software like NetMHC
uary 17, 2021 ª 2020 The Author(s). Published by Elsevier Inc. 195
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:bbravi.bb@gmail.com
mailto:simona.cocco@phys.ens.fr
mailto:remi.monasson@phys.ens.fr
mailto:thierry.mora@phys.ens.fr
mailto:thierry.mora@phys.ens.fr
mailto:aleksandra.walczak@phys.ens.fr
https://doi.org/10.1016/j.cels.2020.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2020.11.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B C

D E

F G

Figure 1. RBM Approach to HLA-I Antigen Presentation

(A) Antigens binding to a given HLA match specific ‘‘sequence motifs’’ represented by logos (example of Tax-HLA-A*02:01 complex structure, PDB-ID:1BD2,

Mol* image; Sehnal et al., 2018).

(B) RBM model structure, see also Figures S1–S3.

(C) RBM scores for presented versus generic peptides on HLA-A*02:01 and predictive performance assessed by ROC.

(D) RBM and NetMHC performance at recovering MS-detected peptides from Sarkizova et al., 2020 for 92 HLA-I alleles as measured by AUC and PPV metrics,

see also see Figure S5. PPVs and AUCs are plotted as a function of the distance between the corresponding HLA and the closest one in NetMHCpan4.0 training

dataset. Bold lines highlight the trend of mean AUC and PPV values (plotted by squares) over subsets of alleles grouped by distance as indicated by vertical

dashed lines (63 alleles with distance = 0, 15 alleles with 0 < distance < 0.05, 10 alleles with 0.05 < distance < 0.1, and 4 alleles with distance > 0.1).

(E) Score percentiles on the same allele as (C) of the neoantigens from 5 cancer cell lines validated in Marty et al., 2017: 4 neoantigens validated for cell line

SKOV3, 4 for A375, 4 for A2780, 3 for OV90, and 1 for HeLa.

(F) Correlation of experimental stability of SARS-CoV-2 epitopes (94 for each HLA allele; Immunitrack and Intavis, 2020) with scores from NetMHC4.0/

NetMHCpan4.0 and scores from RBM trained on BA—not available for HLA-C alleles under consideration—and MS data (with ad hoc sequence re-weighting),

see also STAR Methods; Figures S4 and S7; Table S1.

(G) RBM and NetMHC4.0 score percentiles (relative to all SARS-CoV-2 9-mers) of n = 22 homologs of dominant SARS-CoV epitopes identified in Grifoni et al.,

2020, see also Figure S7. Boxplots indicate median, upper, and lower quartiles.
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(Andreatta and Nielsen, 2016; Jurtz et al., 2017; Reynisson et al.,

2020), with which it is not intended to compete on an equal

footing.
196 Cell Systems 12, 195–202, February 17, 2021
The method consists of two parts. The first component (Fig-

ure 1) relies on a RBM, an unsupervised machine-learning

scheme that learns probability distributions of sequences given
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Figure 2. RBM-MHC Approach to HLA-I Classification

(A) RBM-MHCworkflow, see also Figures S1–S3. RBM projects sequences onto a representation in terms of ‘‘hidden units’’ (we selected hidden unit 8 and 10 for

illustration) through the set of learnt weights. In this representation space, each cluster groups together antigens with the same HLA-binding specificity (given by

the color code). Linear classification guided by the knowledge on the HLA-I restriction of a few antigens in each cluster (‘‘labels’’) is performed through the HLA-I

classifier to predict the HLA-I type of all antigens. Data: IEDB-derived dataset for haplotype 1, Table S2.

(B) RBM distinguishes 2 subclasses in HLA-B*51:01-binding antigens. The HLA-B*51:01-peptide bond can be established (Gfeller et al., 2018) via (i) the inter-

action of the HLA-B*51:01 residue 62 with peptide position 2, requiring a hydrophilic residue there, typically alanine (A), and a polar or negatively charged residue,

typically aspartic acid (D), at position 1; and, (ii) with R62 sidechain facing the solvent, requiring co-occurrence at positions 1–2 of hydrophobic residues, typically

proline (P), at position 2. Inspection of the inputs to the 10th hidden unit (h10), found by projecting peptides predicted by RBM-MHC asHLA-B*51:01-specific onto

the corresponding weights (STAR Methods, Equation 4), reveals a bimodal distribution, enabling the discrimination of the ‘‘hydrophilic/charged’’ pattern (i) from

the ‘‘hydrophobic’’ pattern (ii), as recapitulated by the sequence logos.

(C) Performance (AUC) of 6methods for HLA-I prediction on 9-mer in 10 synthetic-individual samples, each carrying 6 HLA-I covering A, B, and C alleles (see also

Figure S8; Table S2). Bars are standard deviations over the 10 datasets.

(D) Sequence logos of clusters found with RBM-MHC trained on melanoma-associated sample 12T (Kalaora et al., 2016, 2018) and IEDB mono-allelic data; r

gives the Pearson correlation between respective amino acid frequencies.

(E) Performances (average Pearson correlation r over clusters) for 3 samples from (Kalaora et al., 2016, 2018; Bassani-Sternberg et al., 2016), see also Figure S9

and Table S3. In C, E the MixMHCp and NetMHC versions used are MixMHCp2.1 and NetMHCpan4.1, respectively.
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as input (Smolensky, 1986; Hinton, 2002; Tubiana et al., 2019).

The RBM estimates presentation scores for each peptide and

can generate candidate presentable peptides. The RBM also

provides a lower-dimensional representation of peptides with a
clear interpretation in terms of associated HLA type. The second

component of the method (Figure 2) exploits this efficient repre-

sentation to classify sequences by HLA restriction in a super-

vised way, using only a small number of annotations.
Cell Systems 12, 195–202, February 17, 2021 197
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RESULTS

Restricted BoltzmannMachine for Peptide Presentation
The first building block of the method is a RBM, a probabilistic

graphical model defined by a simple structure with one hidden

layer and weights connecting the input—the peptide

sequence—to the hidden layer (Figure 1B). RBM parameters,

i.e., the weights and the biases acting on both input and hidden

units, are learned from a training set of presented peptides

collected from public repositories or custom samples (STAR

Methods; Figures S1A, S2A, and S3). These input peptides

may come frommass spectrometry (MS) experiments or binding

assays. Theymay come from several HLA alleles, or a single one.

For example, in datasets from single-individual samples, the

number of HLAs is at most 6, as each individual inherits 2 alleles

of each locus HLA-A, HLA-B, and HLA-C. Another example is

given by mono-allelic samples (Abelin et al., 2017; Sarkizova

et al., 2020), where peptides are presented by a single HLA

protein.

After training, theRBM returns aprobability for each sequence,

which is interpreted as a global score of antigen presentation by

the HLA proteins involved in the training dataset. Since learning

the RBM requires fixed-length input sequences, we first reduce

peptides of variable length to a reference length by an alignment

procedure based on a Hidden Markov Model profile built from

aligning subsets of same-length sequences using standard rou-

tines (STAR Methods; Figure S1E). We set the reference length

to 9-residues, the most common length of peptides presented

by class I MHCs (Bassani-Sternberg et al., 2015; Andreatta and

Nielsen, 2016; Trolle et al., 2016; Sarkizova et al., 2020).

RBM Performance on Mono-Allelic Data
As a first validity check of RBM-based presentation scores, we

built a RBM model to predict presentation by a single common

allele, HLA-A*02:01, from MS data annotated with this HLA re-

striction in IEDB (Vita et al., 2019). We tested the model score’s

ability to discriminate presented peptides from ‘‘generic’’ pep-

tides (randomly drawn from the human proteome). We calcu-

lated a receiver operating characteristic (ROC) curve from

RBM presentation scores assigned to a test set of presented

versus generic peptides (Figure 1C). The area under the ROC,

AUC = 0.973, far above the random-expectation value (AUC =

0.5) and close to the maximal value (AUC = 1), proves the RBM

predictive power at recovering presented antigens.

We next benchmarked RBM’s predictive power on recent MS

datasets from mono-allelic cell lines (Sarkizova et al., 2020). In

addition to the AUC, which considers with equal weight pre-

sented and generic peptides, we computed the positive predic-

tive value (PPV) (Abelin et al., 2017; Sarkizova et al., 2020), which

measures the model’s ability to correctly recognize presented

peptides among a 99- or 999-fold excess of generic peptides

(equivalent to assuming that only 1%; Yewdell, 2006; Paul

et al., 2013; Vitiello and Zanetti, 2017; or 0.1%; Abelin et al.,

2017; Sarkizova et al., 2020) of all peptides bind to a given

HLA, see STAR Methods). Figure S5B compares the AUC and

PPV between RBM and NetMHCpan4.0 (Jurtz et al., 2017) for

all the 92 different HLA alleles encompassing A, B, C loci from

Sarkizova et al., 2020 (31 HLA-A, 40 HLA-B, and 21 HLA-C).

NetMHCpan4.0 is the penultimate version of NetMHCpan, which
198 Cell Systems 12, 195–202, February 17, 2021
was trained before the publication of the mono-allelic data (Sar-

kizova et al., 2020) and is therefore trained on an independent

dataset. In contrast, RBM was trained on data presently avail-

able in IEDB for all the 92 alleles. To ensure independence

from the training set, testing peptides were manually excluded

from the training data (STARMethods). Bothmethods performed

comparably (AUC = 0.97 for RBM versus 0.95 for NetMHC, 1%

PPV = 0.52 for RBM versus 0.53 for NetMHC).

When there is limited or no data for a given HLA allele,

NetMHCpan extrapolates from the most similar HLA allele for

which data are available. Figure 1D shows that NetMHCpan per-

formance degrades with the distance between the queried HLA

and nearest neighbor in the training dataset (Nielsen et al., 2007).

By contrast, the RBM performs equally well on all HLAs, which is

expected as in that case the distance to the training dataset is

always zero. This highlights the importance of being able to flex-

ibly and rapidly train models on new data, especially for HLA al-

leles that are poorly covered in previously available datasets. The

four alleles at the largest distance from NetMHCpan4.0 training

data, for which RBM outperforms NetMHC, are all HLA-C

(HLA-C*01:02, HLA-C*02:02, HLA-C*07:04, and HLA-C*17:01,

see Figure S5B), a locus usually under-represented in existing

databases.

RBM Can Predict Cancer Neoantigens
An application of antigen presentability is the identification of

neoantigens arising from cancer mutations, which are key to

evaluating their potential for immunotherapies. To assess

RBM’s ability to predict neoantigens, we looked atmissensemu-

tations in 5 ovarian and melanoma cancer cell lines from Marty

et al., 2017. We attributed presentation scores to all 8–11-mer

peptides harboring these mutations, using the RBM previously

trained on HLA*A:02:01 (known to be expressed in the 5 cell

lines), and also computed, for comparison, the corresponding

score by NetMHCpan4.1 (Reynisson et al., 2020), the latest

version of NetMHCpan. 16 neoantigens were experimentally

validated by MS to associate with HLA*A:02:01 (Marty et al.,

2017). Of those, 15 were ranked by RBM in the top 4.1% among

generic peptides (mean score percentile 1.5% versus 1.6% for

NetMHC) and 4.7% among mutated peptides (mean 1.8%

versus 0.9% for NetMHC) for the corresponding cell line. This

demonstrates that the RBM reaches state-of-the-art perfor-

mance at predicting presented neoantigens.

Severe Acute Respiratory Syndrome Coronavirus 2
Epitope Discovery
Predicting which antigens are presented by virus-infected cells

is key to the rational design of vaccines targeting these antigens.

We tested RBM’s ability to perform this task on the example of

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), using recent in vitromeasurements of binding stability (Immu-

nitrack and Intavis, 2020) of SARS-CoV-2 candidate epitopes

(selected using NetMHC4.0; Andreatta and Nielsen, 2016; and

NetMHCpan4.0; Jurtz et al., 2017; see STAR Methods).

We first trained an allele-specific RBM for each HLA-I involved

in the experiment. Since the experiment measures binding, we

chose our training sets as binding assay (BA) datasets as well

as MS datasets that were reweighed to make them comparable

to BAs (correcting for amino acid frequency biases, see STAR
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Methods). We then attributed a RBM score to each peptide and

compared it to its experimental binding stability (Figures S7A

and S7B). In Figure 1F we report the correlation between the

RBM score and measurement for each allele. The performance

of the NetMHC version used to select the epitopes

(NetMHC4.0/NetMHCpan4.0) is shown for comparison. As

before, RBM outperforms NetMHC4.0/NetMHCpan4.0 for rarer

HLA-C alleles (HLA-C*07:01 and HLA-C*01:02). It is noteworthy

that correlations scores for rare alleles are improved using the

very recent NetMHCpan4.1 and get comparable to RBM results

(see Figure S7C). Supported by the good performance of RBM

on rare alleles, we suggest new SARS-CoV-2 epitopes for HLA-

C alleles that were not among the top-scoring ones by

NetMHC4.0/NetMHCpan4.0. Our predictions, given in Table S1,

have been favorably cross-checked with NetMHCpan4.1 scores.

RBM also assigns high presentation scores to SARS-CoV-2

epitopes that are homologous to experimentally validated

SARS-CoV cytotoxic T cell epitopes (Grifoni et al., 2020),

on par with NetMHC4.0 (Figure 1G) and NetMHCpan4.0/

NetMHCpan4.1 (Figure S7E).
RBM Offers Useful Low-Dimension Representations
In addition to providing a presentation score, RBM hidden units

allow formapping peptides onto a lower-dimensional ‘‘represen-

tation space’’ given by the inputs to the RBM hidden units (Tubi-

ana et al., 2019) (see STAR Methods). The full potential of this

representation is best illustrated on a RBM trained on multi-

allelic data, where peptides may be bound to up to 6 different

HLA-I proteins. Figure 2A shows an example of such a represen-

tation projected in 2 dimensions, on a synthetic dataset obtained

by pooling peptides from 6 HLA restrictions in IEDB. The low-

dimensional projection organizes peptides into 6 well-defined

clusters, reflecting the HLA-binding specificities present in the

sample. Each HLA recognizes specific ‘‘sequence motifs’’ (pat-

terns of preferred residues at each position) in the presented

peptides. The data-derived RBM parameters underlying that

representation play a key role in capturing which amino acids

contribute to defining HLA-binding motifs, as illustrated in a bial-

lelic case in Figure S2B.

The representation space can also be useful to reveal new fea-

tures even in the mono-allelic case. An example is provided by

HLA-B*51:01-restricted peptides derived from a clinical sample

(Kalaora et al., 2016, 2018) (see below for details about how re-

striction was predicted). Projection of HLA-B*51:01-specific

sequences onto a single RBM feature reveals a double-peaked

histogram, corresponding to two structurally alternative binding

modes, which were validated in Gfeller et al., 2018 (Figure 2B).
HLA Classification with RBM-MHC
This low-dimensional representation of peptides suggests an

efficient way to classify them byHLA-I specificity using the anno-

tation of a small number of sequences by their HLA preference.

In practice, these annotated sequences may come from other

experiments or public databases as IEDB (Vita et al., 2019). Us-

ing these annotations, we train a linear classifier to predict the

HLA restriction of individual peptides from their RBM representa-

tion (see STAR Methods; Figures 2A, S2A, and S3C–S3E). We

refer to this architecture, which combines the RBM (trained on
unannotated peptides) and the HLA-I classifier (trained on a

few annotated ones), as RBM-MHC.

To test performance in a case where the ground truth is

known, we trained RBMs on 10 synthetic ‘‘single-individual’’

samples pooling together IEDB 9-mer antigens presented by 6

HLA-I proteins per individual, covering 43 different alleles in total

(12 HLA-A, 17 HLA-B, and 14 HLA-C, see STAR Methods and

Table S2). We randomly selected 10% of peptides and labeled

them with their associated HLA and used them to train the

RBM-MHC classifier. The performance of RBM-MHC at predict-

ing HLA association, as measured by AUC = 0.991, is excellent

(Figure 2C and STAR Methods). The RBM representation is

crucial for achieving high prediction performance. Training a

linear HLA-I classifier directly on the annotated sequences

(rather than their RBM representation) yields a much poorer per-

formance (AUC=0.733). On the other hand, a completely unsu-

pervised clustering algorithm (K-means; Lloyd, 1982) applied

to unlabeled data in RBM representation space (‘‘RBM-km’’)

performed well (AUC=0.927), while K-means applied directly to

sequences did not (AUC = 0.650; Figure 2C and STARMethods).

The structure of the RBM representation space further allows

for setting up a well interpretable protocol to generate new arti-

ficial peptides from themodel with controlled HLA-binding spec-

ificity (STAR Methods, Figures S2C–S2E).

We next extended our HLA type predictions to peptides of var-

iable length (8–11 residues). Multiallelic datasets pose the addi-

tional challenge that sequences must be aligned together across

different HLA motifs. To optimize this multiple sequence align-

ment, we resorted to an iterative procedure where the sequence

alignment is refined using the HLA assignments from the first

iteration of RBM-MHC, after which a second RBM-MHC is

trained to obtain the final model. This procedure allows the steps

of HLA classification and alignment to inform each other (STAR

Methods and Figure S1E). We benchmarked our alignment

routine against other well-established alignment strategies

(based on the MAFFT software; Katoh and Standley, 2013) and

we verified that our routine ensures higher HLA classification

performance even without the refinement step (STAR Methods

and Figures S1F–S1L).

RBM-MHC Compares Favorably to Existing Methods
RBM-MHC outperforms MixMHCp2.1 (Bassani-Sternberg and

Gfeller, 2016; Bassani-Sternberg et al., 2017; Gfeller et al.,

2018) in terms of both overall accuracy and stability across the

10 synthetic datasets (Figures 2C and S8). This is in part thanks

to the 10% labeled data it exploits. The RBM also captures

global sequence correlations that MixMHCp’s independent-

site models miss, which are needed to correctly classify antigens

across alleles with similar binding motifs. The major drop in

MixMHCp2.1 performance occurs precisely in datasets that

mix same-supertype alleles (Sidney et al., 2008) (HLA-B*27:05

and HLA-B*39:01 belonging to supertype B27; and, HLA-

B*40:01 and HLA-B*44:03 belonging to B44, see Table S2).

RBM-MHC also performs better in terms of AUC than NetMHC-

pan4.1 (Reynisson et al., 2020), which can be applied here to

predict binding to each of the 6 alleles in our datasets and re-

mains comparable to NetMHCpan4.1 when several other perfor-

mance indicators are considered (Figure S8). The gain in AUC of

RBM-MHC over MixMHCp and NetMHC is slightly more
Cell Systems 12, 195–202, February 17, 2021 199
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pronounced for 9-mer-only samples than for 8–11-mer (Fig-

ure S8A), thus suggesting room for further improvement in the

alignment.

Application to Single-Patient Cancer Immunopeptidome
To assess the relevance of our approach in a clinical setting, we

considered single-patient, melanoma-associated immunopepti-

domics datasets (Kalaora et al., 2016, 2018; Bassani-Sternberg

et al., 2016), complemented with patient HLA typing and whole-

exome sequencing (WES) of tumorous cells, wherein a total 11

neoantigens were identified.We tested the RBM-MHC approach

for motif reconstruction. Since in this case, true peptide-HLA as-

sociations are unknown, the model performance is evaluated

through the correlation between the predicted motifs and motifs

reconstructed from IEDB monoallelic data (Figures 2D–2E and

S9). RBM-MHC, MixMHCp2.1, and NetMHCpan4.1 perform

comparably, with the exception of sample Mel8, where

MixMHCp2.1 merges antigens specific to the 2 HLA-C into the

same cluster causing a drop in the average r (Figures 2E and

S9B). In addition, RBM-MHC and its unsupervised version

RBM-km trained on the patient dataset (see STARMethods) sys-

tematically predicted the correct HLA association for all neoan-

tigens. They also assigned a top 1% score among all WES mu-

tants to 8 out of the 11 identified neoantigens (Table S3).

DISCUSSION

In this work, we presented RBM-MHC, which is a flexible predic-

tor of antigen sequences presented on specific HLA-I types. It

can be broadly used for four tasks. First, the RBM module of

the method can be used to score the presentability of (neo)anti-

gens, regardless of HLA information (Figure 1). Second, the

low-dimensional representation of peptides provided by the

RBM allows one to visualize different HLA-binding motifs (as in

Figure 2A), or different binding modes within the same HLA (as

in Figure 2B), providing a useful tool for data exploration and

feature discovery. Third, RBM-MHCmaybeused to classify pep-

tides by HLA restriction using only a limited number of annota-

tions, matching state-of-the-art performance (Figure 2C). Finally,

themethod can generate putative antigens with or without a spe-

cific HLA restriction (Figures S2C–S2E). These generated pep-

tides could be experimentally tested in future, providing addi-

tional evidence for the validity of the model (Russ et al., 2020).

RBM-MHC’s use will also depend on the choice of the training

dataset. Single-allele datasets allow for training allele-specific

models to score antigen presentation by a specific HLA allele.

In this way, we have proposed new putative SARS-CoV-2 epi-

topes for HLA-C alleles that could be tested experimentally (Ta-

ble S1). Multi-allelic datasets (from e.g., peptidomeMS of clinical

samples) allow for training models to score antigen presentation

in a given donor (with all its HLA-I alleles), and to predict the HLA-

binding specificity of given peptides. We benchmarked our

approach on several examples of datasets. In single-allele data-

sets, we found that RBM-MHC can perform similarly to estab-

lished methods, such as NetMHCpan, for frequent, well-charac-

terized alleles (Figures 1D–1G, S5, and S7), despite the fact that

NetMHC training is fully supervised, incorporates more informa-

tion such as binding affinities, and uses positive (binders) as well

as negative (non-binders) examples. The number of binders per
200 Cell Systems 12, 195–202, February 17, 2021
allele in the version NetMHCpan4.0 ranges between ~50 and

~9,500 (Jurtz et al., 2017), while RBM-MHC is trained on data-

sets of presented peptides only, making our approach less

data demanding. The amount of 8-11-mer peptides per allele

considered in this work from IEDB-derived MS records varies

from ~100 to 104, with an average (2,350) comparable to

NetMHCpan4.0 positive examples. RBM-MHC is a more flexible

machine-learning scheme that can be easily trained on newly

produced datasets, tracking the fast-growing number of avail-

able datasets to improve its predictive power, especially for pre-

viously under-represented HLA-I alleles (Figures 1D, 1F, and S5),

such as HLA-C alleles.

The latest version of NetMHCpan, NetMHCpan4.1 (Reynisson

et al., 2020), was published very recently, three years after the

previous release NetMHCpan4.0 (Jurtz et al., 2017). This new

version was trained on a total of ~850,000 ligands collected

from public (mainly IEDB) and in-house resources (Reynisson

et al., 2020), which is a 10-fold increase with respect to NetMHC-

pan4.0. All our comparisons were done with this latest version,

except on the monoallelic data from Sarkizova et al., 2020 (Fig-

ure 1D) and on the SARS-CoV-2 epitope data from Immunitrack

and Intavis, 2020 (Figure 1F), where we have used version 4.0 for

independent validation and consistency. For completeness in

Figures S6 and S7C we report the results obtained with

NetMHCpan4.1, showing an improvement of performance for

rare alleles thanks to the increase of training data. These results

support our main conclusion that our approach is especially use-

ful in scenarios where new data become available but current

methods are not updated yet to cover the corresponding alleles

with good accuracy, as was the case when data from Sarkizova

et al., 2020 and Immunitrack and Intavis, 2020 came out while

NetMHCpan4.0 was the latest version.

RBM-MHC can also be applied to unannotated, moderate-

size multiallelic datasets available from clinical studies, for which

there may exist only a limited number of HLA annotations in ex-

isting databases (<100) for the patients rarer HLA alleles. We

have shown that RBM-MHC efficiently exploits the statistical in-

formation in these samples and combines it with limited annota-

tion information to deliver accurate and stable predictions of

HLA-I binding (Figures 2C–2E, S8, and S9; Tables S2 and S3).

The flexibility of choice of the training dataset and correspond-

ing applications is even broader. Themethod is not limited toMS

datasets but can be trained on datasets from binding affinity as-

says to customize presentation score predictions toward the

identification of high-affinity ligands (see Figure 1F). If only MS

data are available to build a predictor for this task, as is the

case for HLA-C alleles in Figure 1F, a commonly acknowledged

issue is that biases of MS techniques can potentially affect the

amino acid frequency distribution in training datasets and hence

the predictor’s results. To address this issuewe developed, simi-

larly to Bassani-Sternberg et al., 2017, a sequence re-weighting

scheme to efficiently compensate for detection biases in MS and

better score ligands tested in vitro (STAR Methods, Figure S4).

Overall, our results show that the approach is useful for sys-

tematic applications with newly produced large-scale datasets

covering an increasing range of HLA types. Future work will be

devoted to also develop an extension to HLA class II presenta-

tion. Finally, since our method is designed to be trained on

custom samples it could be of relevance to produce sample-
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specific insights about the complexity of endogenous antigen

presentation. As a future direction, we will investigate how the

probabilistic framework provided by RBM-MHC can be ex-

ploited to develop these insights in a quantitative manner.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

IEDB MHC ligand data Vita et al. (2019) https://www.iedb.org/database_export_v3.php

IEDB-derived multi-allelic benchmark samples This paper Table S2; https://github.com/bravib/rbm-mhc/tree/

master/data/Multiallelic_Synthetic_individuals

Software and Algorithms

RBM-MHC This paper https://github.com/bravib/rbm-mhc

NetMHCpan4.0 Jurtz et al. (2017) http://www.cbs.dtu.dk/services/NetMHCpan-4.0

NetMHCpan4.1 Reynisson et al. (2020) http://www.cbs.dtu.dk/services/NetMHCpan-4.1/

NetMHC4.0 Andreatta and Nielsen (2016) http://www.cbs.dtu.dk/services/NetMHC

MixMHCp2.1 Bassani-Sternberg and GFeller

(2016); Gfeller et al. (2018)

https://github.com/GfellerLab/MixMHCp

Other

MS-identified peptides in mono-allelic cell lines Sarkizova et al. (2020) https://github.com/bravib/rbm-mhc/tree/master/

data/Allele-specific_models

MS-identified peptides carrying mutations in cancer

cell lines SKOV3, A2780, OV90, HeLa, A375

Marty et al. (2017) https://github.com/bravib/rbm-mhc/tree/master/

data/Allele-specific_models

SARS-CoV-2 epitopes (tested in vitro) Immunitrack and Intavis https://www.immunitrack.com/free-coronavirus-

report-for-download/

SARS-CoV and SARS-CoV-2 homolog epitopes Grifoni et al. (2020) N/A

Multi-allelic MS cancer sample 12T Kalaora et al. (2016); Kalaora

et al. (2018)

https://github.com/bravib/rbm-mhc/tree/master/

data/Multiallelic_Cancer_samples

Multi-allelic MS cancer samples Mel8, Mel15, Mel5 Bassani-Sternberg et al. (2016) https://github.com/bravib/rbm-mhc/tree/master/

data/Multiallelic_Cancer_samples

Cosmic Cell Lines Project Forbes et al. (2016) https://cancer.sanger.ac.uk/cosmic

Genomics of Drug Sensitivity Center Yang et al. (2013) https://www.cancerrxgene.org/

Single Nucleotide Polymorphism Database (dbSNP) Sherry et al. (2001) http://www.ncbi.nlm.nih.gov/SNP/

GenBank Benson et al. (2013) https://www.ncbi.nlm.nih.gov/genbank/

UniProt UnitProt Consortium, 2019 http://www.uniprot.org/

HLA frequency net González-Galarza et al. (2015) http://www.allelefrequencies.net/
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METHOD DETAILS

Schematic Outline of the RBM-MHC Pipeline
The essential steps of the RBM-MHC application pipeline are:

1. Collection of Training Datasets

RBM-MHC can be trained on patient-derived clinical samples or on datasets collected frompublic repositories - here we constructed

training datasets from mass spectrometry and binding affinity assays available in IEDB. See Figure S1A and STAR Methods section

‘‘Dataset collection from IEDB and preparation’’ for a detailed description.

2. Alignment

RBM-MHC works with fixed-length sequences, hence peptide sequences are first reduced to the same length through an alignment

routine, see Figure S1E and STAR Methods section ‘‘Antigen sequence alignment’’ for a detailed description.

3. RBM-MHC Algorithm

The full RBM-MHC architecture (Figure 2A) combines a Restricted Boltzmann Machine (RBM) and a HLA-I classifier, trained in suc-

cessive steps. See Figures S2 and S3 and STAR Methods section ‘‘RBM-MHC algorithm’’ for a detailed description.

Dataset Collection from IEDB and Preparation
The analyses described throughout this work rely on the collection of sets of peptides documented with selected HLA restriction in

the Immune Epitope Database (IEDB, last release; Vita et al., 2019).

Mass Spectrometry Datasets

The search in IEDB for immunopeptidomic data frommass spectrometry (MS) was performed as follows. The full set of curated HLA-I

ligands was downloaded from IEDB (file mhc_ligand_full.csv from http://www.iedb.org/database_export_v3.php, accessed in July

2020). In this IEDB file, we looked for linear, human peptides eluted from cells and detected by MS techniques (field Assay Group =

‘‘ligand presentation’’, field Method/Technique = ‘‘cellular MHC/mass spectrometry’’, ‘‘mass spectrometry’’, ‘‘secreted MHC/mass

spectrometry’’). Among these data, we prioritized HLA-specific peptides from mono-allelic sources, in such a way that the assign-

ment of HLA-binding specificity is unambiguous and does not rely on additional in silico predictions. To do this in practice, we set the

field Allele Evidence Code = ‘‘Single allele present’’, indicating that antigen presenting cells are known to only express a single HLA-I

molecule, as is the case for mono-allelic cell lines (Abelin et al., 2017; Sarkizova et al., 2020). If, for a given allele, we found less than a

minimal number (set to 300) of sequences amongmono-allelic-source data, we extended the search to peptides with Allele Evidence

Code = ‘‘Allele Specific Purification’’, since this procedure attaches greater confidence to the HLA assignment than its inference by in

silicomethods. Only for one allele (HLA-B*39:01) did we extend the search to all other MS data, including the evidence code ‘‘Inferred

by motif or alleles present’’. MS datasets filtered through these steps were used to train allele-specific RBM presentation models (as

in Figures 1C–1F) and multi-allelic models (as in Figures 2C–2E). In a multi-allelic setting, we first tested motif reconstruction by

considering 10 ‘‘synthetic-individual’’ datasets of antigens with known HLA-I specificity to assess the RBM-MHC classification per-

formance by comparing RBM-MHC predictions against the known HLA-I specificity. These datasets were built by collecting all IEDB

antigens (searched as above) associated to 2 haplotypes, i.e., combinations of an A, a B, a C HLA allele observed to co-occur in the

human population to preserve linkage (see Table S2). Information on haplotypes co-occurrence was found at allelefrequencies.net

(González-Galarza et al., 2015). To apply the RBM-MHC method to multi-allelic, patient-derived immunopeptidomic samples, we

sought to have a small amount of labeled peptides, here set to 10%. To this end, we either retrieved a HLA annotation in IEDB for

portions of the samples or, when this was not possible, we added to each of them labeled peptides from IEDB (searched as above)

for the 6 HLA-I given by the patient’s HLA typing. The RBM-MHC training set was then defined as this minimally extended dataset, to

guide the learning of the HLA-I classifier by the labeled peptides, whose predictions are used to reconstruct HLA-I motifs in the orig-

inal dataset.We did not attempt to identify motifs in the datasetMel5 from (Bassani-Sternberg et al., 2016) as the patient’s HLA typing

was incomplete (lacking the HLA-C alleles).

Binding Assay Datasets

Records of binding affinity (BA) assays from IEDB (as of July 2020) were filtered following (Sarkizova et al., 2020), i.e. selecting pep-

tides annotated with a quantitative measure of binding dissociation constants <500 nM and excluding assay types that led to docu-

mented discrepancies between predicted and effective affinity (‘‘purified MHC/direct/radioactivity/dissociation constant KD’’, ‘‘pu-

rified MHC/direct/fluorescence/half maximal effective concentration (EC50)’’, ‘‘cellular MHC/direct/fluorescence/ half maximal

effective concentration (EC50)’’). BA datasets were used to train allele-specific models of Figures 1F–1G.

Antigen Sequence Alignment
The typical length of HLA-I peptides, structurally constrained by the MHC-I binding cleft, is generally recognized to be 8 to 11 amino

acids (Bassani-Sternberg et al., 2015; Andreatta and Nielsen, 2016; Trolle et al., 2016; Sarkizova et al., 2020), with 9-mers being the

most abundant except for very few exceptions (Sarkizova et al., 2020). Hence we focus on datasets containing 8–11-mers (Figures

S1B–S1D) and an alignment procedure is implemented to reduce peptide sequences to the typical length of 9 residues. This choice of

a 9-mer-centered alignment is also consistent with the treatment of variable-length class I peptides by other algorithms asMixMHCp,

which scores their positions based on 9-mer motifs (Gfeller et al., 2018), and NetMHC, which applies to sequences with length

different from 9 the insertions and deletions that give optimal predicted scores for presentation by a given allele (Andreatta and Niel-

sen, 2016).
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Our alignment routine is articulated around the construction of a main alignment and an alignment refinement, aimed at improving

HLA classification and hence motif reconstruction. The optimal alignment for each peptide is found by separately aligning subsets of

peptides sharing the same HLA-binding specificity that best describe the corresponding sequence motif. In turn, optimally aligning a

peptide facilitates its correct association the HLA type. However, identifying such subsets in typical samples, which pool together

peptides of different specificity, requires first a step of motif reconstruction, i.e. of assignment of putative HLA types to all peptides.

The workflow of the alignment procedure, depicted in Figure S1E, is as follows.

Main Alignment

d Progressively align fixed-length subsets of sequences (Step 1 in Figure S1E). We estimate Position Weight Matrix (PWM) pro-

files of subsets of sequences with the same length and we align these profiles, using respectively the functions seqprofile and

profalign (with default options) of the MATLAB Bioinformatics Toolbox (release R2018b). The alignment is made progressively

from the minimal length considered (here 8 residues) to the maximal one (here 11 residues) by inserting gaps in shorter profiles,

resulting in an alignment of the maximal length considered (11). This alignment is used as seed to learn a HiddenMarkovModel

(HMM) profile of the reference length = 9 by appeal to the routines hmmprofstruct and hmmprofestimate (with default param-

eters) of the MATLAB Bioinformatics Toolbox.

d Align sequences to the HMM profile, Step 2 in Figure S1E. Sequences with length different from 9 are re-aligned to the HMM

profile relying on the position-specific insertion/deletion probabilities of the HMM (by the hmmprofalign function). This proced-

ure results in amultiple sequence alignment displayingmostly the insertion of a gap in 8-mers and single/double deletions in 10/

11-mers.

d Use this first alignment to train RBM-MHC.

Alignment refinement (for HLA classification in multi-allelic samples):

d Build HLA-specific HMM profiles by grouping peptides based on the putative ‘‘class’’ (HLA type) predicted by the HLA-I clas-

sifier (Step 3 in Figure S1E). First, for each HLA-I class, we put together the 10% of labeled data and the peptides classified in

that class, weighted by the probability of classification, reflecting the degree of confidence of class assignment. We build on

this sample a HLA-specific HMMby the routines hmmprofstruct and hmmprofestimate (with default parameters). We use these

HMM profiles (essentially capturing the pattern of single-site amino acid frequency for each HLA type) as seeds of each class’s

alignment.

d Re-align peptides based on the best HMM alignment scores (Step 4 in Figure S1E). We take every unlabeled peptide and we

consider the alignment to each of the classes’ seeds and the corresponding HMM alignment score (both given by the hmmpro-

falign function). We retain, for each peptide, the alignment with the highest score. Such best scoring alignment can be to a class

that is different from the classifier-predicted one, allowing us to re-classify peptides more accurately in the subsequent itera-

tion. This step helps therefore correct classification errors arising from the initial, suboptimal alignment by means of allele-spe-

cific HMM alignment scores.

d Repeat the RBM-MHC training after the re-alignment.

In the 10 ‘‘synthetic-individual’’ datasets considered for testing motif reconstruction (Table S2), high classification performance

was reached already at the first iteration and we observed a further, systematic improvement after 1 re-alignment step, see Fig-

ure S1F. For 2 or more iterations, there are cases in which the classification performance is degraded, therefore in our motif recon-

struction applications (Figures 2C–2E) we re-align and re-train once.

The alignment routine is designed in such a way as to be easily tuned to a different reference length and to the inclusion of longer

peptides, depending on the particular length preferences of the alleles of interest and on data availability. For instance, in Figure S1H

we show that HLA classification performance is rather stable with respect to the choice of the reference length in the range 8–11

residues and could even slightly increase for reference lengths > 9. We recall however that the choice of reference length = 9 is

made to reflect the typical length of class I peptides: peptide length distributions of the datasets considered in this work confirm

that 9 residues is by far the most abundant length (Figures S1B–S1D).

To test the quality our alignment routine, we compared its performance at HLA classification to that of other common alignment

software,MAFFT (latest version 7.471; Katoh andStandley, 2013) andHMMER (http://hmmer.org/). Default options of thesemethods

tend to produce very gapped alignments, that might cause a rather drastic loss of information on the original peptides and hence

affect the RBM-MHC classification performance. In contrast, the progressive alignment of profiles obtained from subsets of se-

quences of the same length (Step 1 in Figure S1E) allows for well controlled gap insertions. We found that large gap penalties are

more suitable for applying MAFFT to the type of alignment of interest here, and yield better performance. After a grid search we

set in MAFFT the penalty for opening a gap to 8, the one for extending a gap to 12. We implementedMAFFT: (i)with a speed-oriented

option, FFT-NS-2, see (Katoh and Standley, 2013); (ii) with an accuracy-oriented option – G-INS-I – recommended for sequences of

similar lengths. (We have checked that other accuracy-oriented options, E-INS-I and L-INS-i, lead to rather similar results). MAFFT

accuracy-oriented options tend to be slow, hence we ran it only on a subset of the sample. We use this aligned subset as a seed to

build a HMMby the HMMER routine hmmbuild (with open-gap penalty and extension-gap penalty respectively increased to 0.49 and

0.99). All the other sequences are then aligned by the routine hmmalign. To get an alignment of length 9, one can adjust accordingly a

maximal gap percentage, i.e., columns with more than this percentage of gaps are filtered out to reduce the alignment length. For
Cell Systems 12, 195–202.e1–e9, February 17, 2021 e3
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example, to obtain the alignments of length = 9 used for Figure S1G, columns with in average > 68% of gaps (MAFFT-FFT-NS-2) and

> 65%of gaps (MAFFT-G-INS-i + HMMER) were filtered out. Varying this percentage threshold allows one to work with alignments of

different reference length, see e.g. Figures S1I–S1L. We did not find evidence that MAFFT-based alignments (i) and (ii) lead to

improved performance compared to the alignment routine we adopted, already in the first training iteration (Figure S1G). In particular,

the fast, but usually less accurate, FFT-NS-2 option, allowing for a global alignment of the full sample, performs better than the use of

a HMM model built from an accurately aligned seed. This might be due to the fact that the initial choice of a unique seed, including

peptides of different specificity yet to predict, is inevitably suboptimal.

RBM-MHC Algorithm
Restricted Boltzmann Machine (RBM)

The RBM learns an underlying probability model for the antigen sequences in the training datasets, in our case the HLA-I presented

antigens. A RBM (Smolensky, 1986; Hinton, 2002) consists of one layer of Nv observed units v = fvigN
v

i =1 and one layer of Nh hidden

units h= fhmgN
h

m= 1 connected by weights W = fwimg (see Figure 2A). The observed units v stand here for the antigen sequences to

model, hence Nv = 9 and the number of ‘‘symbols’’, q, for each observed unit is 21 (20 amino acids and the gap). Mathematically,

the model is defined by a joint probability over presented antigen sequences and hidden units:

Pðv;hÞ � exp

 XNv

i = 1

giðviÞ�
XNh

m= 1

UmðhmÞ +
X
i;m

hmwimðviÞ
!

(Equation 1)

where giðviÞ is a matrix of Nv3q local ‘‘potentials’’ (biases) acting on observed units, UmðhmÞ are Nh local potentials on hidden units

and the weightswimðviÞ (arranged in a tensor of size Nv 3 Nh 3 q) couple hidden and observed units. The parametric form of UmðhmÞ is
chosen as a double Rectified Linear Units (dReLu):

UmðhÞ = 1

2
gm;+ h

2
+ +

1

2
gm;�h

2
� + qm;+h+ + qm;�h� h+ =maxðh;0Þ h� =minðh;0Þ (Equation 2)

containing parameters (gm;+ ;gm;�;h+ ;h�) to infer from data during training (see below). The dReLu was shown to outperform other

choices of potential such as Gaussian (Tubiana and Monasson, 2017; Tubiana et al., 2019), guaranteeing that correlations beyond

pairwise in data are captured. The probability distribution over the presented antigen sequences one is interested in modeling is

recovered as the marginal probability over hidden units:

PðvÞ =
Z YNh

m= 1

dhmPðv;hÞ � exp

 XNv

i = 1

giðviÞ +
XNh

m=1

GmðImðvÞÞ
!

(Equation 3)

where GmðIðvÞÞ = log
R
dh e�UmðhÞ+ hI. We define ImðvÞ, the input to hidden unit m coming from the observed sequence v, as the sum

of the weights entering that particular hidden unit:

ImðvÞ =
X
i

wimðviÞ (Equation 4)

During the modeling step called ‘‘training’’, the weights wim, the local potentials giðviÞ and the parameters specifying UmðhmÞ are
inferred from data by maximizing the average log-likelihood LRBM = ClogPðvÞDdata of sequence data v, as previously described (Tubi-

ana and Monasson, 2017; Tubiana et al., 2019). This leads to inferring the RBM probability distribution that optimally reproduces the

statistics of the training dataset (see Figure S3H for comparisons of data and model single-site frequency and pairwise connected

correlations). During training, the contribution of sequences to LRBM can be re-weighted following a re-weighting scheme we have

conceived (see STAR Methods section ‘‘Sequence re-weighting scheme’’) to correct for amino-acid frequency biases in the training

dataset, as the ones introduced by mass spectrometry (MS) detection. A regularization, i.e. a penalty term over the weight param-

eters is introduced to prevent overfitting. The function maximized during training then becomes:

LRBM � l21
2q Nv

X
m

 X
i;v

jwimðvÞj
!2

(Equation 5)

This regularization, which was first introduced in (Tubiana et al., 2019), plays effectively the role of a L1 regularization, imposing

sparsity of weights, with a strength that is adapted to increasing magnitude of weights, hence favoring homogeneity among hidden

units (see Tubiana et al., 2019 for more detailed explanations). Examples of inferred sets of weights at different regularization strength

l21 are provided in Figures S2B and S3G. The package used for training, evaluating and visualizing RBMs is an updated version of the

one described in (Tubiana et al., 2019). The packagewas ported to Python3 and the optimization algorithmwas changed fromSGD to

RMSprop (i.e., to ADAM without momentum) with learning rate 5,10�3, b1 = 0, b2 = 0:99, ε = 10�3) (see Kingma and Ba, 2015 for

definition of the parameters). The parameter values were chosen for their robust learning performance across a variety of datasets

studied in previous works such asMNIST, Ising models, andMSAs of protein domains of various sizes. Overall, the adaptive learning

rate of RMSprop/ADAM result in larger updates for the fields and weights attached to rare amino acids, and hence speeds up

convergence.
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The (hyper-)parametric search for optimal regularization (l21) and number of hidden units (Nh) was made from the trend of the RBM

log-likelihood on a held-out validation dataset, the aim being to achieve a good fit but to avoid overfitting. Figures S3A and S3B illus-

trate such (hyper-)parametric search for amulti-allelic RBM. Low regularizations achieve a better fit of training data (see log-likelihood

values for the training dataset); when selecting a low regularization (as l21 = 0:001), the log-likelihood over the validation dataset starts

to decrease beyondNh = 10, indicating overfitting. Given these trends, we trained the multi-allelic RBMmodels (Figures 2C–2E) with

Nh = 10 and l21 = 0:001. This choice is further supported by considering, in Figure S3C, the accuracy of HLA classification (see below

for its definition), which reaches an optimal value for l21 = 0:001 and Nh = 10. The same test with an allele-specific RBM (Figure S3F)

shows that already beyond Nh = 5 the model could overfit, hence allele-specific RBM presentation models (Figures 1C–1G) were

trained with Nh = 5 and l21 = 0:001.

HLA-I Classifier
The HLA-I classifier part of the RBM-MHC takes as input IðvÞ= fImðvÞgN

h

m= 1 of the peptide sequence v and gives a categorical output,

i.e. the peptide HLA-I specificity (Figures 2A and S2A). c= 1;.;Nc denotes the HLA-I type. Typically for single-individual samples

Nc = 6, since each individual displays at most 2 different copies (a maternal and a paternal copy) of HLA-A, HLA-B and HLA-C.

The classifier is trained by minimizing a loss function chosen to be a categorical cross-entropy S:

S = �
X
v

XNc

c= 1

ycðvÞ log
�bycðvÞ

�
(Equation 6)

where the v sum runs only over the sequences labeled with their HLA-I association. ycðvÞ is the label assigned to v for supervised

training in one-hot encoding, i.e. ycðvÞ= 1 only for the c standing for its associated HLA type and zero otherwise so
P
c
ycðvÞ= 1 (it is

normalized over categories). The choice of one-hot encoding is justified by the fact that, for the sake of discriminating motifs, we

select peptides associated to only 1 HLA type in the database (mainly frommono-allelic sources, see STAR Methods section ‘‘Data-

set collection from IEDB and preparation’’). byðvÞ is the categorical output predicted by the HLA-I classifier for v, calculated from the

softmax activation function: byðvÞ = softmaxðX , IðvÞ + bÞ (Equation 7)

whereX are the classifier weights, connecting input to output layer (see Figure S2A), andb are local biases adjusted during training.

Element-wise softmax is defined as:

softmaxðzÞc =
ezcP
c0e

zc0
(Equation 8)

The activation function softmax has the advantage of giving predictions normalized over categories, thus each element bycðvÞ can
be interpreted as the probability that sequence v belongs to class c. Our numerical implementation relies on Theano and Keras Py-

thon libraries. Training is performed inminibatches of 64 sequences, by the ADAMoptimizer for 1000 epochs, retaining themodel that

gives the best accuracy on a held-out partition of the ~30% of the training dataset. The choice of RBM (hyper-)parameters (see

above) also ensures a high accuracy of classification (Figure S3C). Accuracy of classification is measured there as an area under

the curve (AUC), which is different from the cross-entropy optimized during training (Equation 6) and is defined below, in the section

‘‘RBM-MHCperformance inmulti-allelic samples’’. This AUC value is onlyminimally affectedwhen reducing the RBM training dataset

and is close to 1 (indicating the maximal accuracy) already with the small number of labeled sequences used, i.e. 10% of data. (The

AUC clearly increases further when increasing this amount, see Figures S3D–S3E)

Combining the probability functions estimated by RBM and HLA-I classifier, we define for each sequence v a global score LðvÞ:
LðvÞ = LRBMðvÞ+LClðvÞ (Equation 9)

where LRBMðvÞ= logPðvÞ is the RBM log-likelihood assigned to sequence v and LClðvÞ is the classifier score, defined from the vec-

tor of predicted class probabilities bycðvÞ as LClðvÞ = PNc

c= 1
bycðvÞ logðbycðvÞÞ. LClðvÞ is the negative entropy of classification, so it con-

tributes to LðvÞ with higher values when the confidence with which a HLA-I class is predicted is higher.

We shall stress here that we do not attempt to optimize log-likelihood given by the global score Equation 9, as this strategy has the

risk of introducing biases in the representation learnt by the RBM in a fully unsupervisedway - backpropagating the classifier gradient

to the RBM training would have the effect of adapting its hidden-space representation to the prediction of the HLA type. Rather, it is

precisely learning the classifier on top of the cluster structure discovered in an unsupervised way in the RBM representation space

that ensures robust HLA type prediction in the scenario we envision, i.e., whenwe have very few labels at our disposal to characterize

new datasets. In addition, optimizing Equation 9 could potentially also imply a loss of the feature discovery power of a fully unsuper-

vised approach, as data features not directly contributing to the HLA specificity would not be internally represented.

Unsupervised Clustering
K-Means Algorithm

Given a set of points x, K-means (Lloyd, 1982; Forgy, 1965) finds the centroids of c= 1;.;Nc clusters and assigns each x to the clus-

ter whose centroid has theminimal distance to x. If we indicate by dcðxÞ the distance between point x and a cluster c, we can express

the probability that x belongs to cluster c as:
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bykm

c ðxÞ = e�dcðxÞPNc

c0 = 1e
�dc0 ðxÞ

; (Equation 10)

as is a common choice in the ‘‘soft’’ version of K-means. We define RBM-km as the application of K-means to sequence repre-

sentations in the space of inputs to hidden units (i.e. x = IðvÞ) instead of sequences themselves (i.e. x = v). From such a probabilistic

clustering prediction, we define the classification score
PNc

c=1
bykmc ðxÞ logðbykmc ðxÞÞ. Our implementation of K-means relies on the

routine available in the Python package Scikit-learn (Pedregosa et al., 2011).

MixMHCp Algorithm

Consistently with the other approaches discussed, we assume that the expected number of clustersNc is known, and we implement

the clustering by MixMHCp2.1 (Bassani-Sternberg and Gfeller, 2016; Bassani-Sternberg et al., 2017; Gfeller et al., 2018). First we

build Position Weight Matrices (PWM) for each of the Nc clusters found by MixMHCp; each PWM describes the single-site amino

acid frequencies fci ðviÞ in cluster c, with c = 1;.;Nc. For a sequence v a set of presentation scores (one per cluster) can be defined

from the log-likelihood under the corresponding PWM:

LMM
c ðvÞ =

XL
i = 1

logfci ðviÞ c= 1;.;Nc; (Equation 11)

where the superscriptMM stands for ‘‘MixMHCp’’ and L is the length to which all sequences are reduced inMixMHCp (L = 9). The

final score of a sequence v is taken as themaximal log-likelihood among theNc clusters,LMMðvÞ = maxcLMM
c ðvÞ, which is used jointly

to predict the HLA association.

Annotation of HLA-I Binding Motifs

The first step in clustering approaches, either by MixMHCp or K-means, is fully unsupervised and consists of optimally assigning

peptides to Nc clusters. Clusters then need to be annotated with the corresponding HLA-binding specificity, among the Nc ones

known to be expressed in the sample cells from e.g. HLA typing. For this second step, we consider the fraction of data for which

we have labels (the same used for training the HLA-I classifier) and we estimate from them a PWM for each HLA type, in such a

way as to obtain a set of reference motifs. We next estimate the PWM of each cluster and we label the cluster with the HLA asso-

ciation of the reference motif that minimizes the difference to the cluster PWM. Note that this mapping could give the same HLA

type associated to several clusters and other HLA types not associated to any cluster, indicating a poor classification performance.

Generation of HLA-Specific Artificial Peptides
A RBM is a generative model. As it is based on fitting an entire probability distribution to a given dataset, sampling from this distri-

bution allows one to generate new candidate antigens. The binding specificity to HLA-I of such generated sequences can be

controlled by conditioning (fixing) the RBM probability on the values of inputs to hidden units coding for the desired specificity.

The search for these values is guided by the HLA-I classifier. This procedure directly builds on the idea of sampling while conditioning

on structural, functional, phylogenetic features emerging in RBM representations of protein families (Tubiana et al., 2019). Schemat-

ically, the steps of this HLA-specific sampling are as follows:

1. we select a HLA-I class c (e.g. c = HLA-A*01:01) and we find Io such that bycðIoÞ is close to 1 (that is, there is high confidence of

class c prediction);

2. we estimate ho = ChD from the conditional probability PðhjIoÞ and we sample new sequences v from the probability of observed

sequences conditioned on ho, Pðvjh = hoÞ;
3. to further explore the region encoding for the specificity to HLA-I class c, we randomly move from Io to In = Io + dI (dIs drawn

from a Gaussian Nð0;sÞ);
4. we accept themovewith a probability p � expð� bðen � eoÞÞ, where en = � logðbycðInÞÞ and eo = � logðbycðIoÞÞ. The parameter

b (akin to an inverse temperature in physics) basically controls how stringent the selection for sequences predicted in class c

with a high probability is.

5. We set Io = In to proceed with new moves as in step 3. Every arbitrary amount of moves, we generate new configurations by

conditional sampling as in step 2.

Figure S2C shows examples of In values (2 of its components for simplicity) covered in this search with b= 50 and s= 0:01 (dark red

points). By this sampling procedure, we generate samples of artificial peptides that would be predicted to be presentable and spe-

cifically presented by the selected HLA-I protein complex. Such samples explore a broad diversity of peptides, that are typically 3–4

mutations away from the closest natural ones (Figure S2D) while preserving the profile of amino acid abundances constrained by a

given binding specificity (Figure S2E).

Sequence Re-weighting Scheme
RBM presentation models trained on datasets obtained by mass spectrometry (MS) might underestimate the probability of presen-

tation of ligands that are less frequently detected by MS. The most evident case are ligands containing cysteine, an amino acid that
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can undergo chemical modifications by oxidation typically not included in standard MS searches. We introduced a procedure for re-

weighting sequences as a general strategy to correct for biases in the training dataset, such as MS detection biases. We defined a

weight for each sequence v in the training set:

aðvÞ =
YNv

i = 1

fbackðviÞ
fMSðviÞ ; (Equation 12)

where fMS denotes typical amino acid frequencies in MS (as can be estimated from IEDB data) while fback is a background amino

acid frequency distribution that does not suffer from the same biases as the MS one. These weights aðvÞ are incorporated into the

average log-likelihood to maximize during RBM training:

LRBM =
1P

vaðvÞ
X
v

aðvÞlogðPðvÞÞ: (Equation 13)

Whenmodeling multiple specificities throughmixtures of PWMs (as by MixMHCp andMixMHCpred, see Bassani-Sternberg et al.,

2017), an analogous correction can be implemented by rescaling the amino acid frequency composing each PWM by the back-

ground frequency. Following Ref. (Bassani-Sternberg et al., 2017), fback can be chosen as the frequency of amino acids in the human

proteome or as the frequency of amino acids in IEDB antigens detected by other techniques than MS (we shall refer to these as

fnon�MS). More precisely, fnon�MS is estimated from frequencies at non-anchor sites (position 4 to position 7 of 9-mers), excluding

from the search all alleles that: (i) have fewer than 100 peptides associated to them; (ii) are present in neitherMS nor non-MS datasets;

(iii) show specificity at positions between 4 and 7.

In Figure S4A, the comparison of fnon�MS and fMS for the 20 amino acids provides a clear indication of the MS detection bias in

relation to the amino acids cysteine (C) and tryptophan (W), the frequency difference between MS detection and other techniques

being more than 100% of MS frequency itself. The C/W frequency in presented antigens is therefore expected to be underestimated

byMS, suggesting that ligands containing C/W,whose binding affinity to HLA-I could be successfully tested in vitro, would bemissed

by MS. For the purpose of illustration, we test how the re-weighting procedure could correct for such bias on a presentation model

built from IEDB, MS data for the allele HLA-A*01:01, with fback = fnon�MS. We first compute the weights a (Equation 12) for sequences

in the training dataset. In Figure S4B, we show separately their distribution for sequences with andwithout C/W: for the former, a have

particularly high values, in such a way as to weight more their statistical information and to compensate for the underestimation of C/

W frequencies in MS. The effect of re-weighting can be then assessed on a validation dataset, in particular on its sequences with C/

W, looking at the distribution of their presentation scores relative to the average scores over the full validation set (see Figure S4C).

When considering a RBM model trained without re-weighting (giving the probability PMS), these sequences would be assigned a

score lower than the average score of the validation set, as a straight consequence of the low amount of ligands with C/W in the

training set. Once the RBMmodel is learnedwith re-weighting (giving the probability PMS
reweight ), the score assigned to these sequences

is brought closer to the average value and in particular to overlap with the range of presentation score values that would be assigned

by a RBM model (Pnon�MS) trained on IEDB data for the same HLA allele from techniques different from MS (i.e. data that do not un-

derestimate the occurrence of C/W in presented antigens). The re-weighting scheme can also improve the ability of the RBMmodel to

discriminate antigens containing C/W of validated immunogenicity (Rufer et al., 1998; Amir et al., 2011) from generic peptides, by

assigning them presentation scores of higher rank. We show this in Figure S4D, where we consider a re-weighted version of the

HLA-A*02:01-specific model of Figures 1C and 1E. While there (as well as in the analysis of Figures 1D and 2B–2E) the re-weighting

was not necessary, as we validated the model on the same type of data (MS-detected) as the training set (MS-based), in Figure S4D

we show that the re-weighting is useful for scoring by aMS-based model peptides from binding assays and that contain amino acids

underdetected by MS. Similarly, another scenario where we applied the re-weighting scheme is the prediction, by MS models, of

SARS-CoV-2 epitopes tested in vitro for binding, as in Figure 1F. The re-weighting procedure just described can be activated as

an option in the RBM-MHC software package.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model Predictions in Mono-Allelic MS Datasets
To assign scores of presentation by a specific HLA-I, we resorted simply to the RBM to build HLA-specific presentation models (with

Nh = 5, l21 = 0:001). To train them, sets of 8–11-mer peptides documented with the corresponding HLA association were collected

from IEDB, restricting to mono-allelic-source, mass spectrometry sequence data, as outlined in the section ‘‘Dataset collection from

IEDB and preparation’’. We then used the RBM log-likelihood LRBM as probabilistic score of presentation by the HLA under consid-

eration. For the preliminary validity check of the HLA-A*02:01-specific model, we randomly selected a subset with the 80% of these

sequences as training dataset and we kept the remaining 20% as test set to evaluate themodel’s predictions in terms of probabilistic

scores of presentation (Figure 1C). We randomly selected 5000 peptides from the human proteome (as in UniProt database; UnitProt

Consortium, 2019) with length distribution matching the one of presented peptides to serve as a set of peptides predominantly not

presented on the cell surface (‘‘generic’’).

To test our method onmono-allelic MS datasets from Ref. (Sarkizova et al., 2020), we trained 92 allele-specific RBMmodels, for all

the A, B, C HLAs analyzed in (Sarkizova et al., 2020). We decided to train a series of allele-specific models to minimize the uneven
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accuracy across alleles, emerging especially in multi-allelic models, due to the different abundances of peptides with different HLA-I

preferences available as training data. (The use of multi-allelic models is intended as tool to characterize unannotated samples

through motif reconstruction). For each model, we randomly selected in the corresponding mono-allelic dataset 100 peptides to

use for model evaluation. Since datasets from (Sarkizova et al., 2020) feature in the latest version of IEDB, we carefully excluded

the 100 peptides per model from the IEDB-derived training datasets. We produced, as described above, n-fold excess of generic

peptides, choosing n in such a way as to consider a proportion between presented and generic peptides that resembles natural con-

ditions of epitope selection. Large-scale experimental and bioinformatic studies on viral peptidomes (Yewdell, 2006; Paul et al., 2013;

Vitiello and Zanetti, 2017) found that ~1% of peptides bind to given MHCs (suggesting the value n=99). Comparing the amount of all

9-long peptides from human proteome (~107) and the average, allele-specific antigen repertoire size (~104 sequences) derived from

existing databases as IEDB, Refs. (Abelin et al., 2017; Sarkizova et al., 2020) concluded rather that ~0.1% of peptides is ‘‘present-

able’’ (corresponding to n=999). These approximate estimates allowed us to fix a threshold for positive prediction at, respectively, the

top-scoring 1% and 0.1% of peptides in order to evaluate model performance by the PPV metric. (The random expectation for the

PPV in these conditions is 10�2 and 10�3 for the PPV estimated respectively at the top scoring 1%and 0.1%). AUCs do not vary, apart

from noise, with n; the AUC values shown in Figures 1D and S5 are the ones obtained with n=99 (i.e., generic and presented peptides

mixed in proportion 100:1). To better rationalize differences between RBM and NetMHCpan4.0 in connection to different HLAs, we

monitored performance as a function of the distance between the query HLA and its nearest neighbor in the NetMHCpan4.0 training

dataset, where such distance is determined from the similarity between the two HLA-I sequences (more precisely, the 34 residues in

contact with the peptide). The distance between sequences X and Y is defined as 1� SðX;YÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðX;XÞSðY ;YÞp

, where e.g. SðX;YÞ is
a global alignment score between X and Y based on the BLOSUM50 substitution matrix, see (Nielsen et al., 2007; Hoof et al., 2009).

MS-Based Model Validation for Neoantigen Discovery
To evaluate the predictive power of the HLA-A*02:01-specific RBMmodel for neoantigen discovery, we acquired the list of missense

mutations for ovarian andmelanoma cancer cell lines SKOV3, A2780, OV90, HeLa and A375 from the Cosmic Cell Lines Project (For-

bes et al., 2016). We further filtered them largely following the steps described in Ref. (Marty et al., 2017), i.e. we retained only mu-

tations in genes with non-zero expression levels in the corresponding cell line (based on expression data from the Genomics of Drug

Sensitivity Center; Yang et al., 2013) and we excluded common germline variants documented in the Single Nucleotide Polymor-

phism Database (Sherry et al., 2001).

As a result, the number of missense mutations considered is as follows: 444 (A375), 521 (SKOV3), 602 (A2780), 280 (OV90), 511

(HeLa). For each cell line, the list of mutated peptides to score results from adding up all the up to 38 peptides of length 8–11 con-

taining each mutation. Since the MS database for the 5 cancer lines produced by Ref. (Marty et al., 2017) was annotated by com-

parison to the consensus human proteome, it contained only wildtype peptides whose mutated version was in the list of putative

neoantigens. As long as a mutation does not affect an anchor site, the mutated version should preserve a high probability of presen-

tation. We followed the authors’ choice of not considering the two peptides mutated at anchor positions as presented and we

excluded them from the analysis of Figure 1E. When we consider all neoantigens (including the two neoantigens arising from an-

chor-site mutations of MS-derived peptides) the mean score percentiles are: RBM-MHC 3.3% vs NetMHCpan4.1 1.6% (among

generic peptides) and RBM-MHC 3.6% vs NetMHCpan4.1 0.9% (among all mutated peptides from the same cell line).

The studies from which single-patient samples 12T, Mel8, Mel15, Mel5 were retrieved (Kalaora et al., 2016, 2018; Bassani-Stern-

berg et al., 2016) listed a total of 11 tumor-presented neoantigens, using techniques that allow for the detection of variants of native

proteins byMS. For some of these neoantigens, immunogenicity was also validated in vitro by identification of neoantigen-specific T-

cell responses. Their HLA association was predicted by NetMHC software, see (Kalaora et al., 2016, 2018; Bassani-Sternberg et al.,

2016). The prediction was to a large extent confirmed by in vitro validation of immunogenicity, which relied on antigen presenting cells

that were positive to the predicted HLA-I. As the 11 neoantigens are 9–10 residues long, following Ref. (Bassani-Sternberg et al.,

2017) we considered 9-mer and 10-mer peptides overlapping themissense mutations observed in the patient’s WES, which resulted

in a list of thousands of putative neoantigens (see Table S3). The RBM-MHC training set per se can thus take into account only 9–10

mers from patients’ samples; patients’ neoantigens to validate were not included in the training dataset. In this multi-allelic case

where antigens may be presented by several HLA types (as opposed to the allele-specific case of the previous paragraph) we

used the global score accounting for the probability of presentation (by RBM) as well as the confidence of the HLA assignment (either

by the HLA-I classifier in RBM-MHC or by K-means clustering in RBM-km) of Equation 9.

Model Predictions for SARS-CoV-2 Epitopes
We downloaded the protein-coding regions of SARS-CoV-2 genome from GenBank: NC_045512.2 (Benson et al., 2013). We ex-

tracted all the 9-mers contained in the SARS-CoV-2 proteome, giving a list of 9656 candidate cytotoxic T-cell epitopes (HLA-I anti-

gens). Ref. (Immunitrack and Intavis, 2020) (available at https://www.immunitrack.com/free-coronavirus-report-for-download/)

tested in vitro the 94 top scoring epitopes according to NetMHC4.0 (Andreatta and Nielsen, 2016) (a well-known NetMHC version

for binding affinity predictions) for each of the HLA-I alleles A*01:01, A*02:01, A*03:01, A*11:01, A*24:02, B*40:01, C*04:01,

C*07:01, C*07:02 and according to NetMHCpan4.0 (run with EL option) (Jurtz et al., 2017) for C*01:02. 159 peptides were identified

as high-stability binders (i.e., with stability above the threshold of 60% of the reference peptide value for the corresponding HLA-I

allele). Ref. (Immunitrack and Intavis, 2020) also estimated the trend of binding stability (expressed as % of the reference value)

vs predicted score (binding affinity in [nM] for NetMHC4.0, rank percentile for NetMHCpan4.0). Here we report and quantify these
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trends in terms of Pearson correlation for the sake of comparison to RBM (Figures 1F and S7B). To probe our method as a predictor

for the high-stability binders found, we learned a series of allele-specific RBM presentation models (Nh = 5 hidden units, l21 = 0:001)

for the 10 HLA-I alleles considered in this study, prioritizing training datasets from binding assays in IEDB (see STARMethods section

‘‘Dataset collection from IEDB and preparation’’). These types of data are almost absent for the 4 HLA-C mentioned, and in these

cases models were learned from MS data only but a re-weighting of frequencies, aimed at correcting for MS biases in detection,

was applied (see STAR Methods section ‘‘Sequence re-weighting scheme’’). Final BA datasets used have in average 1269 se-

quences, MS ones 1678. All peptides tested for binding to a given HLA-I in Ref. (Immunitrack and Intavis, 2020) were scored by

the corresponding RBM model (see Figure 1F, where, as a comparison, results achieved by training all RBMs on MS data with re-

weighting are also reported). We next estimated their score percentile relative to scores assigned to all candidate epitopes and

we assessed that tested binders were predominantly assigned high scores, able to a good extent to discriminate them from the

tested non-binders (see Figure S7A).

As an additional test, we considered the SARS-CoV-2 cytotoxic T-cell epitopes identified as potentially associated to high immune

responses by Ref. (Grifoni et al., 2020), whomapped the dominant, experimentally validated SARS-CoV-derived epitopes to the cor-

responding regions in the SARS-CoV-2 proteome. We scored the 22 epitopes in this list with complete (100%) or moderate-high (>

70%) sequence similarity to the homologous SARS-CoV epitope, which should preserve high likelihood of presentation. Since ho-

mologous SARS-CoV epitopes were experimentally tested in binding assays, scores were assigned by the same (affinity-trained)

models as above covering the HLA restrictions reported in Ref. (Grifoni et al., 2020) (HLA-A*02:01 to the largest extent, HLA-

A*24:02, HLA-B*40:01), see Figures 1G and S7D. In addition, we checked that scores estimated by MS-trained RBM models with

re-weighting lie in the same range, see Figure S7E.

RBM-MHC Performance in Multi-allelic Samples
We chose the Area Under the Curve (AUC) of the Receiving Operating Characteristic (ROC) as a metric for classification (i.e., HLA

assignment) performance, estimated for each approach as follows. RBM-MHC, through the HLA-I classifier, outputs for each peptide

a probability to belong to each HLA-I class. MixMHCp2.1 (Bassani-Sternberg andGfeller, 2016; Bassani-Sternberg et al., 2017; Gfel-

ler et al., 2018) models probabilistically data by a mixture of independent models, thus it describes each sequence by a vector of

‘‘responsibilities’’, describing the probabilities to belong to each cluster (i.e., HLA-I class). NetMHCpan4.1 (Reynisson et al., 2020)

predicts peptide binding values from either the training on eluted data (EL option) or the binding affinity data (BA option) and it es-

timates from these values presentation scores and percentile rank scores. Low values of percentile rank define binders (following

the authors’ recommendations, peptides with percentile rank ¸2% and ¸0.5% are considered HLA-I weak and strong binders respec-

tively). Having built the samples from MS data, we considered NetMHC predictions from the EL option (NetMHCpan4.1-EL). We

compare theNc = 6 HLA-I classes by pairs. We consider the probability of belonging to a certain class that eachmethodwould assign

to ‘‘positives’’ of that class (peptides binding to the respective HLA-I allele) and ‘‘negatives’’ (peptides binding to other alleles): when

the classification performance is good, the former has values close to one, the latter has values close to zero. Varying the threshold

between false positive and false negative distributions, we build the ROC curve. We take the area under the ROC curve (AUC) as

measure of the ability to discriminate the two classes (AUC = 1 means perfect discrimination, AUC = 0.5 means chance). To obtain

one cumulative indicator, we average over the AUCs of these pairwise comparisons. For the approaches partially or fully supervised

(RBM-MHC and classifier-only), the AUC is measured only from data not in the 10% used for the supervised learning step. To further

assess classification performance, we looked also at the HLA type of each peptide predicted based on: the highest responsibility

value among the Nc values for MixMHCp2.1; the lowest percentile rank for NetMHCpan4.1-EL; the highest class probability esti-

mated by the HLA-I classifier for RBM-MHC. In this way, when comparing peptides of different classes two by two, we can count

true positives of classification (tp), false positives (fp), true negatives (tn) and false negatives (fn). Once these quantities are defined,

additional classification performance indicators are: accuracy = ðtp + tnÞ=ðtp + fp + tn + fnÞ, Precision = tp=ðtp + fpÞ, Specificity =

tn=ðtn + fpÞ, Sensitivity = tp=ðtp + fnÞ. MixMHCp2.1 was run using default options, which include an additional ‘‘trash cluster’’.

When measuring these classification performance indicators, the assignment to the trash cluster is considered among the false neg-

atives. The comparison of classification performance as measured by these indicators is shown in Figures S8B–S8I.
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