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Extracting automatically the complex set of features composing real high-dimensional data is crucial for
achieving high performance in machine-learning tasks. Restricted Boltzmann machines (RBM) are
empirically known to be efficient for this purpose, and to be able to generate distributed and graded
representations of the data. We characterize the structural conditions (sparsity of the weights, low effective
temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining
the activity in the visible layer) allowing RBM to operate in such a compositional phase. Evidence is
provided by the replica analysis of an adequate statistical ensemble of random RBMs and by RBM trained
on the handwritten digits data set MNIST.
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Recent years have witnessed major progress in super-
vised machine learning, e.g., in video, audio, and image
processing [1]. Despite those impressive successes, unsu-
pervised learning, in which the structure of data is learned
without a priori knowledge, still presents formidable
challenges. A fundamental question is how to learn
probability distributions that fit complex data manifolds
well in high-dimensional spaces [2]. Once learned, such
generative models can be used for denoising, completion,
artificial data generation, etc. Hereafter we focus on
one important generative model, restricted Boltzmann
machines (RBM) [3,4]. In its simplest formulation a
RBM is a Boltzmann machine on a bipartite graph, see
Fig. 1(a), with a visible (v) layer that represents the data,
connected to a hidden (h) layer meant to extract and explain
their statistical features. The marginal distribution over the
visible layer is fitted to the data through approximate
likelihood maximization [5–8]. Once the parameters are
trained each hidden unit becomes selectively activated by a
specific data feature; owing to the bidirectionality of the
connections the probability to generate configurations of
the visible layer where this feature is present is, in turn,
increased. Multiple combinations of numbers of features,
with varying degrees of activation of the corresponding
hidden units allow for efficient generation of a large variety
of new data samples. However, the existence of such
“compositional” encoding seems to depend on the values
of the RBM parameters, such as the size of the hidden layer
[9]. Characterizing the conditions under which RBM can
operate in this compositional regime is the purpose of the
present work.
In the RBM shown in Fig. 1(a) the visible layer includes

N units vi, with i ¼ 1;…; N, chosen here to be binary
(¼ 0, 1). Visible units are connected to M hidden units hμ,
through the weights fwiμg. The energy of a configuration
v ¼ fvig, h ¼ fhμg is defined through

E½v;h� ¼ −
XN
i¼1

XM
μ¼1

wiμvihμ −
XN
i¼1

givi þ
XM
μ¼1

UμðhμÞ; ð1Þ

where Uμ is a potential acting on hidden unit μ; due to the
binary nature of the visible units their potential is fully
characterized by a local field, gi in (1). Configurations are
then sampled from the Gibbs equilibrium distribution
associated with E, P½v;h� ¼ expð−E½v;h�Þ=Z, where Z
is the partition function [3].
Given a visible configuration v the most likely value hμ

of hidden unity μ is a function of its input Iμ ¼
P

N
i¼1 wiμvi:

hμ ¼ ΦμðIμÞ, where the activation functionΦμ ¼ ðU 0
μÞ−1 as

can be seen from the minimization of E. Examples ofΦ are
shown in Fig. 1(b). When Φ is linear, i.e., for quadratic
potential U, the probability P½v;h� is Gaussian in the

FIG. 1. (a) Architecture of RBM. Visible (vi, i ¼ 1;…; N) and
hidden (hμ, μ ¼ 1; ::;M) units are connected through weights
(wiμ). (b) Activation functionsΦ of Bernoulli, linear, and rectified
linear units. The corresponding potentials are ULinðhÞ ¼ ðh2=2Þ;
UBerðhÞ ¼ hθB if h ¼ 0 or 1, and þ∞ otherwise; UReLUðhÞ ¼
ðh2=2Þ þ hθ for h ≥ 0, þ∞ for h < 0. (c) The three regimes of
operation; see the text. Black, grey, and white hidden units
symbolize, respectively, strong, weak, and null activations.
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hidden units, and the marginal distribution P½v� of the
visible configurations v can be exactly computed [10].
It coincides with the equilibrium distribution of a
Boltzmann machine with a pairwise interaction matrix
Jij ¼

P
μwiμwjμ, or, equivalently, of a Hopfield model

[11], whose M patterns wμ are the columns of the weight
matrix fwiμg.
Activation functions Φ empirically known in machine-

learning literature to provide good results are, however,
nonlinear. Nonlinear Φ produce effective Boltzmann
machines with high order (> 2) multibody interactions
between the visible units vi. Two examples are shown in
Fig. 1(b): Bernoulli units, which take discrete 0,1 values,
and rectified linear units (ReLU) [1]. Unlike Bernoulli units
ReLU preserve information about the magnitudes of their
inputs above threshold [12]; this property is expected for
real neurons and ReLU were first introduced in the context
of theoretical neuroscience [13].
We first report results from a training experiment of

RBMwith ReLU on the handwritten digits data set MNIST
[14]. Our goal is not to classify digits from 0 to 9, but to
learn a generative model of digits from examples. Details
about learning can be found in Supplemental Material [24],
Sec. I. Figure 2(a) shows typical features wμ ¼ fwiμg after
learning. Each feature includes negative and positive
weights, and is localized around small portions of the
visible layer. These features look like elementary strokes,
which are combined by the RBM to generate random digits

[Fig. 2(b)]. In each generated handwritten digit image Ŝ≃
240 hidden units are silent (hμ ¼ 0); see the histogram in
Fig. 2(c). The remaining hidden units have largely varying
activations, some weak and few very strong; we estimate
the number of strongly activated ones through the partici-
pation ratio L̂ ¼ ½ðPμh

a
μÞ2=

P
μh

2a
μ �, with exponent a ¼ 3

as explained below. On average L̂≃ 20 elementary strokes
compose a generated digit; see Fig. 2(c). Different combi-
nations of strokes correspond to different variants of the
same digits. Many of those variants are not contained in the
training set, and closely match digits in the test set
[Supplemental Material [24], Fig. 1(b)], hence showing
the generative power of RBM.
Learning is accompanied by structural changes in RBM,

which we track with two parameters: p̂ ¼ ð1=MNÞ ×P
μ½ð

P
i w

2
iμÞ2=

P
i w

4
iμ� and W2 ¼ ð1=MÞPi;μw

2
iμ. Those

parameters are proxies for, respectively, the fraction of
nonzero weights and the effective inverse temperature; see
Supplemental Material [24], Sec. III. Figure 2(d) shows that
p̂ diminishes to small values ∼0.1, whereas W2 increases.
While most weights become very small and negligible the
remaining ones get large, in agreement with Fig. 2(a).
Notice that sparsity is not imposed to obtain a specific class
of features, e.g., as in [15], but naturally emerges through
likelihood maximization across training. The presence of
large weights implies that flipping visible units is asso-
ciated with large energy costs. Visible units are effectively
at very low temperature, as can be seen from the quasibi-
nary nature of conditional averages in Fig. 2(b) and
Supplemental Material [24], Fig. 5.
We argue below that these structural changes are not

specific to MNIST-trained RBM but are generically needed
to bring RBM towards a compositional phase, in which
visible configurations are composed from combinations of
a large number L [typically, 1 ≪ L ≪ M, as in Fig. 2(c)] of
features encoded by simultaneously strongly activated
hidden units. Our claim is supported by a detailed analysis
of a random RBM (R-RBM) ensemble, in which the
weights wiμ are quenched random variables, with con-
trolled sparsity and strength, and the magnitude of the
visible fields and the values of the ReLU thresholds can be
chosen. For adequate choices of these control parameters
the compositional phase is thermodynamically favored
with respect to the ferromagnetic phase of the Hopfield
model, where one pattern is activated [16], and to the spin-
glass phase, in which all hidden units are weakly and
incoherently activated [Fig. 1(c)].
In the R-RBM ensemble weights wiμ are independent

random variables, equal to −ð1= ffiffiffiffi
N

p Þ, 0, þð1= ffiffiffiffi
N

p Þ with
probabilities equal to, respectively, ðpi=2Þ, 1 − pi, ðpi=2Þ;
pi ∈ ½0; 1� sets the degree of sparsity of the weights
attached to the visible unit vi, high sparsities corresponding
to small pi. The estimator p̂ defined above [Fig. 2(d)]
measures the fraction of nonzero weights, p ¼ P

ipi=N.

FIG. 2. Training of RBM on MNIST, with N ¼ 28 × 28 visible
units and M ¼ 400 hidden ReLU. (a) Set of weights wμ attached
to four hidden units μ. (b) Averages of v conditioned to five
hidden-unit configurations h sampled from the RBM at equilib-
rium. Black and white pixels correspond respectively to averages
equal to 0 and 1; few intermediary values, indicated by grey
levels, can be seen on the edges of digits. (c) Distributions of L̂
(left) and Ŝ (right) in hidden-unit configurations at equilibrium.
(d) Evolution of the weight sparsity p̂ (red) and the squared
weight value W2 (blue); the training time is measured in epochs
(number of passes over the data set), and represented on a square-
root scale.

PRL 118, 138301 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

31 MARCH 2017

138301-2



This distribution was previously introduced to study
parallel storage of multiple sparse items in the Hopfield
model [17,18]. For simplicity the fields on visible units and
the potentials acting on hidden units are chosen to be
uniform, gi ¼ g and Uμ ¼ UReLU [Fig. 1(a)]. We define the
ratio of the numbers of hidden and visible units, α ¼ M=N.
Given a visible layer configuration v, hidden units μ

coding for features wμ present in v are strongly activated:
their inputs Iμ ¼ wμ · v are strong and positive, comparable
to the product of the norms of wμ (≃ ffiffiffiffi

p
p

for large N) and v
(of the order of

ffiffiffiffiffiffiffi
pN

p
), and, hence, scale asm

ffiffiffiffi
N

p
, wherem,

called magnetization, is finite. Most hidden units μ0 have,
however, features wμ0 essentially orthogonal to v, and
receive inputs Iμ0 fluctuating around 0, with finite varian-
ces. These scalings ensure that L̂ defined above [Fig. 2(c)]
coincides with the number L of strongly activated units
when N → ∞; choosing exponent a ¼ 2 in L̂ rather than
a ¼ 3 would have introduced biases coming from weakly
activated units (Supplemental Material [24], Sec. III B).
The typical ground state (GS) energy E (1) of R-RBM

can be computed with the replica method within the
replica-symmetric ansatz [16], as the optimum of

EGS ¼
L
2
m2 þ α

2
ðqBþ rCÞ − 1

N

X
i

ffiffiffiffiffiffiffiffiffiffi
αpir

p

×

�
Hð1Þ

�
−
�
gþ α

2
Bpi þmW

�� ffiffiffiffiffiffiffiffiffiffi
αpir

p ��
W

þ α

Z
Dzmin

h

�
UReLUðhÞ − C

2
h2 − z

ffiffiffiffiffiffi
pq

p
h
�

ð2Þ

over the order parameters m, L, r, q, B, C (averaged over
the quenched weights): m and L are, respectively, the
magnetization and the number of feature-encoding hidden
units, r is the mean squared activity of the other hidden
units, q ¼ P

ipihviiGS=ðNpÞ is the weighted activity of the
visible layer in the GS, and B, C are response functions,
i.e., derivatives of the mean activity of, respectively, hidden
and visible units with respect to their inputs [19]. In (2)
Dz ¼ ðdz= ffiffiffiffiffiffi

2π
p Þe−z2=2 denotes the Gaussian measure,

HðkÞðxÞ ¼ R
x Dzðz − xÞk, and h·iW is the average over

the sum W of L i.i.d. weights wiμ drawn as above.
We first fix L, and optimize EGS over all the other order

parameters. At large α the only solution has m ¼ 0, and
corresponds to the spin-glass phase. For intermediate
values of α, other solutions, with m > 0, exist. For the
sake of simplicity we consider first the homogenous
sparsity case, with pi ¼ p. We show in Fig. 3(a), for fixed
p ¼ 0.1 and various values of L, the maximal value of α
below which a phase with L magnetized hidden units
exists. Importantly this critical value can be made arbitrar-
ily large by increasing the ReLU threshold θ. This
phenomenon is a consequence of the nonlinearity of
ReLU, and can be understood as follows. The squared

activity r of nonmagnetized hidden units obeys the saddle-
point equation r ¼ pq=ð1 − CÞ2 ×Hð2Þðθ= ffiffiffiffiffiffi

pq
p Þ. The first

factor is reminiscent of the expression r ¼ 1=ð1 − CÞ2
arising for the Hopfield model (for which p ¼ q ¼ 1 at
zero temperature) [16], while the second factor comes from
the nonlinearity of ReLU. Hð2Þ being a rapidly decaying
function of its argument large thresholds θ lead to small r
values. As the level of crosstalk due to nonmagnetized
hidden units diminishes, larger ratios α can be supported by
R-RBM without entering the glassy phase. Numerical
simulations of R-RBMs at large α confirm the existence
and (meta)stability of phases with L nonzero magnetiza-
tions [Fig. 3(b)]. Moreover, the values of the average
normalized magnetizations ~m ¼ m=ðp=2Þ ∈ ½0; 1� are in
excellent agreement with those found by optimizing EGS.
The nature of the large-L phases and the selection of the

value of L are best understood in the limit case of highly
sparse connections, p ≪ 1. The R-RBM model exhibits an
interesting limit behavior, which we call hereafter the
compositional phase. In this regime the number of strongly
magnetized hidden units is unbounded, and diverges as
L ¼ l=p, with l > 0 and finite. The normalized GS energy
el ¼ EGSðL ¼ l=pÞ=p is a nonmonotonic function of the
index l; see Fig. 4(a). Minimization of el leads to the
selection of a well-defined index l�. The magnetizations of
the l�=p strongly activated units, m ¼ ðp=2Þ ~m, vanish
linearly with p [20]. Nonmagnetized hidden units have
activities of the order of

ffiffiffi
r

p
∼ ffiffiffiffi

p
p

, and can be shut down by
choosing thresholds θ ∼ ffiffiffiffi

p
p

; hence crosstalk between
those units can be suppressed, allowing for large relative
size α of the hidden layer. The input received by a visible

FIG. 3. Compositional regime in R-RBM. (a) Critical lines in
the θ, α plane below which L hidden units may be strongly
activated, calculated from the optimization of EGS (2). Parameters
are pi ¼ p ¼ 0.1, g ¼ −0.02. (b) Comparison of theoretical (red
crosses) and numerical simulations (N ¼ 104 visible units,
colored points) for the rescaled magnetizations ~m ¼ m=ðp=2Þ
as a function of the number L of strongly activated hidden units in
R-RBM. 7,500 zero temperature MCMC, each initialized with a
visible configuration strongly overlapping with L ¼ 1; 2;…
features, were launched; the color code indicates the probability
that the same L hidden units are magnetized after convergence
(see the bottom scale), and the corresponding average magneti-
zation ~m.
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unit from the large number of magnetized units is, after
transmission through the dilute weights, of the order of
Lmp ¼ 1

2
l� ~mp; it can be modulated by a (positive or

negative) field g ∼ p to produce any finite activity q in the
visible layer, as soon as the effective temperature gets
below ∼p.
The compositional phase competes with the ferromag-

netic phase, in which ~m > 0 but el is a monotonically
growing function of l (hence, l� ¼ 0), and the spin-glass
phase, in which ~m ¼ 0 and el does not depend on l; see
Fig. 4(a). The phase diagram in the parameter space (α,
~g ¼ ðg=pÞ, ~θ ¼ ðθ= ffiffiffiffi

p
p Þ) will be detailed in [19]. Briefly

speaking, given α, ~θ should be large enough (as in Fig. 3)
and j~gj should be neither too large to penalize the
ferromagnetic phase nor too small to avoid the spin-glass
regime.

Characteristic properties of our compositional phase
are confronted to ReLU RBMs trained on MNIST in
Figs. [4(b) and 4(c)]. Compared to Fig. 2 we add a
regularization penalty ∝

P
μð
P

ijwiμjÞx to control the final
degree of sparsity; the case x ¼ 1 gives standard L1

regularization, while, for x > 1, the effective penalty
strength ∝ ðPijwiμjÞx−1 increases with the weights, hence
promoting homogeneity among hidden units. After training
we generate Monte Carlo samples of each RBM at
equilibrium, and monitor the average number of active
hidden units, L̂, and the normalized magnetization, ~m.
Figure 4(b) shows L̂ vs p̂, in good agreement with the
R-RBM theoretical scaling L ∼ ðl⋆=pÞ. Figure 4(c) shows
that ~m is a decreasing function of l ¼ L̂ × p̂, as qualita-
tively predicted by theory, but quantitatively differs from
the prediction of R-RBM with homogeneous p. This
disagreement can be partly explained by the heterogeneities
in the sparsities pi in RBMs trained on MNIST; e.g., units
on the borders are connected to only a few hidden units,
whereas units at the center of the grid are connected to
many. We introduce a heterogeneous R-RBM model,
where the distribution of the pi’s is fitted from MNIST-
trained RBMs (Supplemental Material [24], Sec. III E). Its
GS energy can be calculated from (2); see Fig. 4(a) [19].
Results are shown in Figs. 4(b) and 4(c) to be in good
agreement with RBM trained on MNIST.
RBMs, unlike the Hopfield or mixture model, may

produce gradually different visible configurations through
progressive changes in the hidden-layer activation pattern.
R-RBMs enjoy the same property. We compute, through a
real-replica approach [19], the average Hamming distance
d (per pixel) between the visible configurations vð1Þ, vð2Þ
minimizing the energy E (1) for two hidden configurations
hð1Þ, hð2Þ sharing ðl − δlÞ=p hidden units among the l=p
strongly activated ones. Figure 4(d) shows that d mono-
tonically increases from d ¼ 0 for δl ¼ 0 up to d ¼
2qð1 − qÞ (complete decorrelation of visible units) for
δl ¼ l, in very good quantitative agreement with results
for RBM trained on MNIST.
The gradual change property has deep dynamical con-

sequences. Markov Chain Monte Carlo (MCMC) of
MNIST-trained RBM (videos available in Supplemental
Material [24]) show that gradual changes may occasionally
lead to another digit type, by passing through well-drawn
yet ambiguous digits. The progressive replacement of
feature-encoding hidden units (small δl steps) along the
transition path does not increase the energy much, and the
transition process is fast compared to activated hopping
between deep minima taking place in the Hopfield model.
Our study is related to several previous works. RBMs

with linear activation functionΦ coincide with the Hopfield
model. In this framework magnetized hidden units identify
retrieved patterns, and α corresponds to the capacity of the
autoassociative memory. Tsodyks and Feigel’man showed

FIG. 4. (a) Behavior of the GS energy el vs l ¼ L × p in the
p → 0 limit. Parameters: ~θ ¼ 1.5, α ¼ 0.5. [(b)–(d)] Quantitative
predictions in the compositional regime of R-RBM compared to
RBMs inferred on MNIST. Each point represents a ReLU RBM
trained with various regularizations, yielding different weight
sparsities p. Solid lines depict predictions found by optimizing el
(2), and dashed line expected fluctuations at finite size (N) and
temperature. (b) Average number L of active hidden units vs p.
(c) Average magnetization ~m vs l ¼ L × p. (d) Distance (per
pixel) between the pairs of visible configurations after conver-
gence of zero temperature MCMC vs relative distances in the
hidden-unit activation patterns. MCMC are initialized with all
pairs of digits in MNIST; final visible configurations differ from
MNIST digits by about seven pixels, both on the training and test
sets; see Supplemental Material [24], Fig. 1. In all four panels
predictions for the homogeneous (~g ¼ −0.21) and heterogeneous
(~g ¼ −0.1725; see Supplemental Material [24], Sec. III E) cases
are shown in, respectively, cyan and magenta.
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how the critical capacity (for single pattern retrieval) could
be dramatically increased with sparse weights (p ≪ 1) and
appropriate tuning of the fields gi [21]; however this effect
could be achieved only with vanishingly low activities q.
Agliari and collaborators showed in a series of papers
[17,18] that multiple sparse patterns could be simultane-
ously retrieved in the case of linear Φ and vanishing
capacity α ¼ 0 (finite M). A finite capacity at zero temper-
ature could be achieved only in the limit case of extreme
sparsity p ¼ c=N, giving α ∼ c−2 [22]; for typical MNIST
values p≃ 0.1 and N ¼ 784 this would give α ∼ 2 × 10−4.
Our work shows that large values of α can be reached even
with moderate sparsity p (as in realistic situations, see
Fig. 2) provided that nonlinear Φ (ReLU) and appropriate
threshold values θ are considered. The presence of the
fields gi acting on the visible units (absent in the vi ¼ �1
model of [17,18,22]) is also crucial for the existence of our
compositional phase as explained above.
It would be interesting to extend our work to more than

one layer of hidden units, or to other types of nonlinear Φ.
While numerical studies of RBMs with Bernoulli hidden
units show no qualitative change compared to ReLU,
choosing ΦðhÞ growing asymptotically faster than h could
affect the nature of the extracted features [23]. An impor-
tant challenge would be to understand the training dynam-
ics, i.e., how hidden units gradually extract features from
data prototypes.
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